Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Biotechnology

Semester: VI

Program: Int BMSC Microbiology-VI Duration : 3 Hours Course Code: HSBT3001 Max. Marks: 100

Instructions: Attempt all questions as per instructions given in each section.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)		
polylinker region (multiple cloning site) in a cloning vector is			
to:			
A) Enhance transcription of inserted genes			
B) Facilitate insertion of DNA fragments at multiple sites			
	C) Initiate replication of the vector in the host cell		
	D) Increase stability of the vector in the host cell		
Q2	Which of the following events marks a significant milestone	1.5	CO1
	in the history of genetic engineering?		
	A) Discovery of the structure of DNA by Watson and Crick		
	B) Development of the polymerase chain reaction (PCR) by		
	Kary Mullis		
	C) Cloning of the first mammal, Dolly the sheep		
	D) Introduction of CRISPR-Cas9 technology for genome		
	editing		
Q3	The development of insulin-producing bacteria using	1.5	CO5
	recombinant DNA technology marked a breakthrough in:		
	A) Agricultural biotechnology		
	B) Medical biotechnology		
	C) Environmental biotechnology		
04	D) Industrial biotechnology	1.5	CO2
Q4	Which of the following is an example of a commonly used	1.5	CO2
	cloning vector derived from a bacteriophage?		
	A) Plasmid		
	B) Cosmid C) VAC (Veset Artificial Characters)		
	C) YAC (Yeast Artificial Chromosome) D) PAC (Posterial Artificial Chromosome)		
05	D) BAC (Bacterial Artificial Chromosome)	1 5	CO2
Q5	The process of creating recombinant DNA molecules involves:	1.5	CO3
	A) Synthesizing new DNA strands from scratch		

	D) C vi D) I C vi T II vi vi		
	B) Cutting DNA fragments using Type II restriction enzymes		
	and ligating them into vectors		
	C) Amplifying DNA sequences using PCR		
	D) Identifying genetic mutations in DNA sequences		
Q6	The main advantage of real-time PCR over conventional PCR	1.5	CO4
Qu	is:	1.0	
	A) Higher specificity		
	B) Higher sensitivity		
	C) Faster amplification		
	D) Real-time monitoring of DNA amplification		
Q 7	Which of the following is an example of a commonly used	1.5	CO2
•	expression vector system?		
	A) pUC19		
	/ 1		
	B) pET system		
	C) Cosmid		
	D) YAC (Yeast Artificial Chromosome)		
Q8	The purpose of gel electrophoresis in molecular cloning is to:	1.5	CO3
	A) Amplify DNA fragments		
	B) Separate DNA fragments based on size		
	C) Insert DNA fragments into plasmids		
00	D) Identify restriction enzyme recognition sites		604
Q 9	Which of the following is NOT a step in the Sanger	1.5	CO4
	sequencing method?		
	A) PCR amplification		
	B) DNA denaturation		
	C) Incorporation of dideoxynucleotides		
	D) Gel electrophoresis		
Q10	Which of the following is NOT a commonly used NGS	1.5	CO5
QIU		1.3	CO3
	platform?		
	A) Illumina		
	B) Pacific Biosciences (PacBio)		
	C) Sanger Sequencing		
	D) Oxford Nanopore Technologies		
Q11	In the context of molecular cloning, PCR (Polymerase Chain	1.5	CO4
VII	Reaction) is primarily used for:		
	A) Amplifying DNA sequences		
	, , , , , , , , , , , , , , , , , , , ,		
	B) Inserting DNA fragments into plasmids		
	C) Identifying restriction enzyme recognition sites		
	D) Selecting transformed bacterial colonies		
Q12	Which of the following techniques relies on the ability of Type	1.5	CO3
=	II restriction enzymes to cut DNA at specific sites?		
	A) Southern blotting		
	B) Polymerase Chain Reaction (PCR)		
	C) Gel electrophoresis		
	D) CRISPR-Cas9 gene editing		
Q13	The technique of blue-white screening is commonly used in	1.5	CO2

	A) Identify bacterial colonies containing recombinant		
	plasmids		
	B) Determine the size of DNA fragments		
014	C) Amplify specific DNA sequences		
	D) Detect restriction enzyme activity	1 5	602
Q14	The purpose of the denaturation step in PCR is to:	1.5	CO3
	A) Anneal primers to the DNA template		
	B) Extend the DNA strands C) Separate the DNA strands		
	D) Introduce mutations into the DNA sequence		
Q15	Why does Bt brinjal not affect the human gut?	1.5	CO5
Q13	A) It contains genes that specifically target human gut cells.	1.3	CO3
	B) Its proteins are broken down by digestive enzymes before		
	reaching the gut.		
	C) Humans lack the receptors targeted by Bt proteins.		
	D) Bt brinjal is not consumed by humans.		
Q16	In NGS, DNA fragments are typically sequenced in:	1.5	CO4
Q -0	A) Parallel	110	
	B) Series		
	C) Isolation		
	D) Conjunction		
Q17	Which of the following is NOT a step in Southern blotting?	1.5	CO3
	a) Gel electrophoresis		
	b) Hybridization		
	c) DNA amplification		
	d) DNA transfer		
Q18	Who is commonly referred to as the "father of biology"?	1.5	CO1
	a) Charles Darwin		
	b) Aristotle		
	c) Gregor Mendel		
0.10	d) Louis Pasteur		
Q19	Recombinant DNA technology is used in the production of	1.5	CO5
	vaccines by:		
	A) Inserting viral genes into bacterial cells		
	B) Generating synthetic viruses		
	C) Culturing live viruses in host animals D) Inserting viral entirons into expression vectors		
O20	D) Inserting viral antigens into expression vectors The development of genetically modified bacteria to produce	1.5	CO4
Q20	insulin is an example of:	1.5	CO4
	A) Gene therapy		
	B) Pharmaceutical biotechnology		
	C) Environmental bioremediation		
	D) Industrial enzyme production		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Describe and draw the basic principle of the biolistic method.	5	CO2

			1
Q2	Create and label the key steps in the schematic of a Southern blotting procedure.	5	CO3
Q3	Justify the significance of the ampicillin resistance gene in	5	CO1
Ų.	pUC19 vector in your own words?	· ·	
Q4	Summaries the primary purpose of agarose gel electrophoresis	5	CO4
_	in molecular biology?		
	Section C		I
	(2Qx15M=30 Marks)		
Q 1	Agrobacterium tumefaciens is a soil bacterium capable of	15	CO3+2
_	transferring a segment of its Ti (tumor-inducing) plasmid,		
	known as T-DNA (transfer DNA), into the genome of a plant		
	host, resulting in the formation of crown gall tumors. This		
	natural genetic transformation ability has been harnessed as a		
	powerful tool in plant biotechnology for the genetic		
	modification of various plant species.		
	(a) Explain the process of Agrobacterium-mediated gene		
	transfer in plants.		
	(b) Draw the schematics representation of Ti plasmid.		
	c) Applications of Agrobacterium - mediated gene		
	delivery. (5+5+5)		
Q2	A laboratory is tasked with sequencing a bacterial genome to	15	CO4+5
	study its genetic makeup and potential virulence factors.		
	a) Outline the workflow and steps involved in using Sanger		
	sequencing for this project.		
	b) Explain chain termination reaction		
	c) Differentiate Sanger with Next generation sequencing.		
	(5+5+5)		
_	Section D		
	(2Qx10M=20 Marks)		
Q 1	Differentiate between RT-PCR versus Real-Time PCR (draw	10	CO2+4
	flowcharts). 5+5		
Q2	You are leading a research project aiming to clone a gene of	10	CO1+2
	interest for studying its function in a model organism. Outline		
	the step-by-step procedure you would follow to clone the gene		
	using molecular cloning techniques.		