N	am	e	

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Bio separation and Biochemical Analysis

Semester: 6

Program: BT-Biotechnology

Duration: 3 Hours

Course Code: HSBT3009 Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Define Scale-up and Scale-down.	1.5	CO1
Q 2	What is Mass Spectrometry?	1.5	CO2
Q 3	Define TLC (Thin-Layer Chromatography)	1.5	CO1
Q 4	Define microfiltration and provide an example of its application in bioprocessing.	1.5	CO3
Q 5	What is concentration polarization in membrane-based separation processes?	1.5	CO3
Q 6	Define agarose gel electrophoresis.	1.5	CO5
Q 7	What are the key differences between filtration processes conducted at constant pressure and constant rate?	1.5	CO5
Q 8	What are the advantages of ultracentrifuges compared to conventional centrifugation techniques	1.5	CO2
Q 9	what factors influence flocculation?	1.5	CO2
Q 10	Define flux expression in membrane filtration.	1.5	CO1
Q 11	What is salt precipitation?	1.5	CO1
Q 12	What is the principle behind solvent extraction in separation processes?	1.5	CO5
Q 13	What is the purpose of dialysis in separation processes?	1.5	CO4
Q 14	What is the main purpose of gel filtration chromatography?	1.5	CO5
Q 15	Define HPLC (High-Performance Liquid Chromatography).	1.5	CO2
Q 16	Define Batch Filtration.	1.5	CO2
Q 17	What is Darcy's Law?	1.5	CO3
Q 18	Define Constant Pressure Filtration.	1.5	CO3
Q 19	Name methods of cell disintegration.	1.5	CO5

Q 20	What is the principles governing flux expression and rejection rates	1.5	CO1
	in membrane filtration?		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	What are the common methods for the quantitation of proteins,	5	CO3
	DNA, and RNA?		
Q 2	Outline the mathematical equations governing batch and	5	CO4
	continuous filtration processes.		
Q 3	What are the key principles underlying gel filtration	5	CO5
	chromatography, and how does it exploit differences in molecular		
	size to separate biomolecules in a mixture?		
Q 4	What are the distinguishing features of ultrafiltration and affinity	5	CO2
	ultrafiltration techniques?		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	What are the primary biomolecules found in living organisms, and	15	CO2
	how do their structures and functions contribute to biological		
	processes?		
Q 2	What are the advantages and limitations of dead-end and cross-	15	CO4
	flow modes in membrane filtration, and how do these operational		
	modes impact the performance and longevity of membrane		
	systems in large-scale biomanufacturing processes?		
	Section D		
	(2Qx10M=20 Marks)		
Q1	How do membrane-based separation processes such as	10	CO5
	microfiltration, dialysis, and reverse osmosis exploit molecular		
	size, charge, and concentration gradients to achieve selective		
	permeation, and what are the challenges associated with		
	minimizing concentration polarization and maximizing flux rates?		
Q 2	What are the key factors influencing the resolution and	10	CO2
	reproducibility of electrophoretic separations, and how can these		
	parameters be optimized for reliable and accurate results in		
	biochemical research and diagnostics?		