Name:

Q10

Enrolment No:

1.5

CO3

UPES End Semester Examination May – 2024 Course : Microbial Food Spoilage and Food Borne Diseases Semester : VI Program : B.Sc. Microbiology Duration : 3 Hours **Course Code : HSMB3006** Max. Marks: 100 **Instructions** : All questions are compulsory S. No. Section A Marks COs Short answer questions/ MCQ/T&F (20Q x 1.5M = 30 Marks) Define Minimal Infective Dose (MID). 1.5 Q1 **CO1** Name a species responsible for thermophilic flat-sour defects in 1.5 **CO1 O2** canned foods. State the purpose of blanching vegetables. Q3 1.5 **CO1 O4** Define Shelf Life. 1.5 **CO1** Name an antimicrobial substance present in milk. Q5 1.5 **CO1** Define Buffering Capacity. 1.5 **CO2 Q6** State the number of principles in a HACCP system? **Q7** 1.5 **CO3** Four a) b) Seven Eighteen c) d) Ten **Q8** Mention a gas former involved in microbial food spoilage. 1.5 **CO2** 09 Large holes in swiss-type cheese is due to CO₂ production by: 1.5 **CO2** a) Propionibacterium shermanii b) Penicillium roquefortii c) Aspergillus flavus d) Lactobacillus acidophilus

Mention the toxin that causes Paralytic Shellfish disease.

Q11	Identify who is regarded as the father of canning:	1.5	CO2
	a) Nicolas Appert		
	b) Louis Pasteur		
	c) John Hall		
	d) Bryan Dokin		
Q12	The method of preventing or reducing pathogens in food	1.5	CO2
	products by combining many methods is called:		
	a) Mixed preservation approach		
	b) High pressure food preservation		
	c) Hurdle technology		
	d) Stumbling technology		
Q13	Fermentation of glycerol in wine results in:	1.5	CO3
	a) Pousse		
	b) Amertume		
	c) Mousy flavor		
	d) Tourne		
Q14	The typical appearance of the blue mold cheeses is due to the	1.5	CO3
	growth of:		
	a) Lactobacillus lactis		
	b) Penicillium roqueforti		
	c) Lactobacillus bulgaricus		
	d) All of the above		
Q15	The principal protein in milk is:	1.5	CO2
	a) Casein		
	b) whey protein		
	c) crude protein		
	d) lactoglobulin		
Q16	Example of soft cheese is:	1.5	CO3
	a) Cheddar		
	b) Swiss		
	c) Brick		
	d) Cottage		
Q17	Milk fermentation to produce cheese is done initially by	1.5	CO2
	inoculating with:		
	a) Saccharomyces cerevisiae		
	b) Streptococcus lactis and Lactobacillus spp.		
	c) Acetobacter and Gluconobacter		
	d) Lactobacillus bulgaricus and Streptococcus		
	thermophilus		

Q18	Kefir grains are composed of:	1.5	CO2
-	a) Symbiotic mixture of Lactic acid bacteria, Yeast and		
	Acetic acid bacteria		
	b) Bifidobacterium and Propionibacterium		
	c) Aspergillus flavus and Penicillium		
	d) All of the above		
Q19	State the full form of FSSAI.	1.5	CO3
Q20	Ester like flavors in butter is caused by:	1.5	CO3
	a) <i>P mephitica</i>		
	b) A hydrophila		
	c) P fragi		
	d) <i>P synxantha</i>		
	Section B	·	
	(4Qx5M=20 Marks)		
Q1	Explain briefly the different pathways food can turn rancid.	5	CO2
Q2	a) Define water activity.	5	CO2
	b) Explain how water activity can affect food preservation?	(2+3)	
Q3	Discuss with examples the role of Thermoduric and	5	CO1
	Psychotrophic microbes in food spoilage.		
Q4	"Food borne intoxication usually takes lesser time to initiate	5	CO1
	disease symptoms than food borne infections." Justify the		
	above statement with reason.		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	"B cereus is a normal soil inhabitant and is frequently isolated from	n 15	CO3
	foods. <i>B cereus</i> food poisoning is not a frequently reportable disease	e	
	and is therefore highly underestimated in official statistics".		
	(a) Describe food-poisoning syndromes caused due to <i>B cereus</i> .	(4+6+5)	
	(b) Explain the role of various toxins involved during <i>B cereus</i> food	-	
	poisoning.		
	(c) Discuss the causes and preventive measures of B cereus food	-	
	poisoning.		
Q2	(a) Define Pasteurization.	15	CO2
	(b) State the difference between Pasteurization and Tyndallization	? (2+2+6+2	
	(c) Explain the different methods of pasteurization.	+3)	
	(d) Mention shelf-life of UHT milk.		
	(e) Discuss the advantages and disadvantages of pasteurization?		

	Section D					
(2Qx10M=20 Marks)						
Q 1	(a) Mention the casual organism of Toxoplasmosis.	10	CO3			
	(b) Discuss the causes, symptoms and preventive measures of	(1+9)				
	toxoplasmosis.					
Q2	Describe in detail the various intrinsic and extrinsic factors	10	CO1			
	influencing microbial food spoilage.					