lame:
lame

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Toxicology and Nanobiotechnology

Program: B. Tech Biotechnology

Course Code: HSTX 2001

Semester: IV Duration: 3 Hours Max. Marks: 100

Instructions: Attempt all Questions

S. No.	Section A	Marks	COs		
	Short answer questions/ MCQ/T&F				
	(20Qx1.5M= 30 Marks)				
Q 1	Recall the name of Noble prize winner who gave the concept of Nanotechnology.	1.5	CO1		
Q 2	Define nanofibers.	1.5 CO1			
Q 3	Recall the formula of Lambert-Beer law.	1.5	1.5 CO1		
Q 4	Recall the different stages of sol-gel method.	1.5 CO1			
Q 5	DLS is used to measure and of nanoparticles.	1.5	CO1		
Q 6	Explain homogenous and heterogenous nucleation.	1.5	CO1		
Q 7	Define polydispersity index (PDI).	1.5	CO1		
Q 8	Enlist different applications of nanobiotechnology.	1.5			
Q 9	Briefly explain the health and safety issues of nanoparticles	1.5	CO1		
Q 10	Discuss the effect of the capping agent on the size of the nanoparticles.	1.5	CO2		
Q 11	The process that results in the conversion of environmental contaminants into less toxic substances with the help of microbiological processes is called a) Biofortification b) Bioremediation c) Bioleaching d) Microbiology	1.5	C01		
Q 12	Oil spills have been considered a major threat to the world environment, especially a) Marine ecosystem b) Terrestrial ecosystem c) Land ecosystem d) Vertebrates	1.5	CO4		
Q 13	focuses on the impacts of chemical pollutants in the environment on biological organisms, specifically studying the impacts of chemicals on	1.5	CO1		

	nonhuman organisms such as fish, birds, terrestrial animals, and plants.		
Q 14	Differentiate between "individual and quantal" dose-response.	1.5	CO2
Q 15	Compare "synergistic and antagonistic" effects.	1.5	CO2
Q 16	List three characteristics that determine the toxic response of a	1.5	CO2
	toxicant.		
Q 17	Flavin-dependent monooxygenases (FMO) catalyze only	1.5	CO4
	oxygenation reactions.		
	a) True		
	b) False		
Q 18	The LD50 is best described as which of the following:	1.5	CO3
	a) the dose at which 50 % of all test animals die		
	b) the dose at which 50 % of the animals demonstrate a		
	response to the chemical		
	c) the dose at which all of the test animals die		
	d) the dose at which at least one of the test animals dies		
Q 19	Differentiate between risk assessment and risk management	1.5	CO3
Q 20	What is Biotransformation?	1.5	CO1
	Section B (4Qx5M=20 Marks)		
Q		5	СО
Q1	Describe the applications of UV visible spectroscopy in the	5	CO1
	characterization of nanoparticles.		
	Or		
	Describe nucleation and growth theory with labeled diagram		
Q2	Discuss chemical vapor deposition (CVD).	5	CO1
	Or		
	Explain intelligent-pills.		
Q3	Discuss the functions of following Phase II- xenobiotic	5	CO3
	metabolizing enzymes, with relevant examples for each:		
	i) Glutathione transferases		
	ii) Sulfotransferases		
ΩA	Briefly discuss the significance of intestinal gut flora in	5	CO4
Q4			
<u></u>	facilitating xenobiotic metabolism in humans.		
Q4			

Q1		Control DNA Test DNA	2+2+4+2+	CO4
			3+2	
	The dia	agram depicts a sensitive technique for the detection of	f	
		amage at the level of the individual eukaryotic cell.		
		er the following questions:		
	_	What is the name of the assay?		
		Briefly describe the principle of the assay.		
	c)	With the help of a well-labeled diagram, outline the steps involved in the assay.		
	q)	What is the Ames test used for?		
	,	What are auxotrophic mutants? Explain with relevance	re	
	Cj	to the Ames test.		
	f)	Discuss the advantage the Ames test has in the first-		
	,	tier screening of mutagens when compared to <i>in-vivo</i>		
		model systems.		
Q2	a) b) c)	Classify nanoparticles based on the method of synthesic Differentiate among chemical, physical, and biologic methods of synthesis of nanoparticles with suitable examples. Why scientists are always looking for new methods	al le	CO1
	,	synthesis of nanoparticles. Explain the synthesis nanoparticles through Homogenous and Heterogenou nucleation	of	
		Section D		
		(2Qx10M=20 Marks)		
Q				
Q1	a) b)	Define nanostructures. Discuss various kinds of nanostructures (0D, 1D, 2) and 3D) with a suitable example of each category.	2+8 D,	CO2
Q2	a) b)	Compare "Genotoxic and Nongenotoxic" carcinogens, with relevant examples for each. Discuss the stepwise mechanisms that lead to the	4+6	CO4
		manifestation of toxicity in an exposed organism. Support the discussion with relevant examples.		