Name: **Enrolment No:** UPES End Semester Examination, May 2024 **Course: Physical Pharmaceutics II** Semester : IV **Program: B. Pharm** Duration : 03 Hours **Course Code: BP 403T** Max. Marks: 75 **Instructions: Attempt all the sections. SECTION A** (20Qx1M=20 Marks) S. No. COs Marks **O.** 1. 1 **CO1** Define zeta potential. Name any two optical properties of colloidal dispersion. **O.** 2. **CO1** 1 Q. 3. What is CMC? 1 **CO1** Q. 4. **CO1** Define peptization. 1 Q. 5. _____ viscometer is used to determine the viscosity of Non-1 **CO2** Newtonian fluids. Q. 6. Define rheology. **CO2** 1 **O**. 7. A coarse suspension has a size range from ______ to 1 **CO2** mm. Q. 8. What is the significance of yield value in plastic flow rheogram? 1 **CO2** 0.9. **CO3** Give one example of each natural and industrial processed emulsion. 1 Q. 10. Name any two structured vehicles. 1 **CO3** 0.11. Define kinematic viscosity with mathematical expression. 1 CO3 Give any two uses of dispersibility in pharmaceutical preparations. **Q. 12.** 1 CO3 **Q. 13.** Range of angle of repose for powdered material showing poor flow 1 **CO4** property is from _____to _____. Name different distribution curves used to analyze the size **Q. 14.** 1 **CO4** distribution of powders. Q. 15. What is Carr's Index? 1 **CO4** 1 Q. 16. Name instrument used to evaluate true density. **CO4 O.** 17. Name three Hiestand compaction indices. 1 **CO5** Q. 18. **CO5** State the Heckel equation. 1 0.19. A radioactive decay process is considered to followorder 1 CO5 reaction.

Q. 20.	If the rate of reaction does not depend upon the initial concentration	1	CO5
	of reactant, the order of reaction is		
SECTION B (20 Marks)			
(2Qx10M=20 Marks)			
Attempt 2 Question out of 3			
Q. 1.	a) Explain the concept of DLVO theory with energy curves.	5	CO1
	b) Explain how DLVO theory applied in stabilizing the colloidal dispersion.	5	
Q. 2.	State principle, construction, working, application, advantages, and	10	CO2
	disadvantages of falling sphere viscometer.		
Q. 3.	Explain the methods involved in the determination of the surface area	10	CO5
	of a powdered sample.		
SECTION-C (35 Marks)			
(7Qx5M=35 Marks)			
Attempt 7 Question out of 9			
Q. 1.	Differentiate between lyophobic and lyophilic colloidal systems.	5	CO1
Q. 2	Write a note on any two time-independent non-Newtonian fluids with	5	CO2
	a graphical representation for each.		
Q. 3.	Define rheology. Classify Newtonian system.	5	CO2
Q. 4.	Give a difference between flocculated and deflocculated suspension.	5	CO3
Q. 5.	Emulsions are thermodynamically unstable. Why?	5	CO3
Q. 6.	Define micromeritics. State its significance in pharmaceutical product	5	CO4
	development.		
Q. 7.	Write a note on derived properties of powder.	5	CO4
Q. 8.	Derive the equation for first order reaction showing that the half-life is	5	CO5
	independent of the concentration.		
Q.9.	Write a note on various chemical factors influencing degradation of	5	CO5
	pharmaceutical products.		