	0	m	Ω	
1.4	\boldsymbol{a}	ш	C	•

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Cheminformatics & Medicinal Chemistry

Program: B.Tech. Biotechnology

Course Code: HSBT2008

Semester : IV

Duration : 3 Hours

Max. Marks: 100

Instructions: The question paper comprises of FOUR sections; all sections are compulsory.

Read the instructions given before each section carefully.

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Define partition coefficient.	1.5	CO1
Q 2	List any THREE examples of traditional folk medicines from whom modern drugs have been discovered.	1.5	CO1
Q 3	Define lead compound in context of drug discovery.	1.5	CO1
Q 4	List any THREE examples of synthetic organic chemicals first used as drugs.	1.5	CO1
Q 5	State the names of any THREE classes of macromolecular drug targets.	1.5	CO1
Q 6	List THREE alternative approaches to deliver an ionised drug.	1.5	CO1
Q 7	State any THREE examples of variation of alkyl or acyl substituents to alter polarity of a drug molecule.	1.5	CO1
Q 8	State the rationale of using steric shields in designing new drug candidates.	1.5	CO1
Q 9	Define bioisosteres.	1.5	CO1
Q 10	State the concept of metabolic blocker functional groups in drug design.	1.5	CO1
Q 11	Define drug biotransformation reactions.	1.5	CO1
Q 12	State the importance of drug biotransformation reactions.	1.5	CO1
Q 13	List THREE most important sites of drug metabolism.	1.5	CO1
Q 14	Define microsomal enzymes and list any TWO reactions catalysed by them.	1.5	CO1
Q 15	List any THREE major human forms of P450 enzymes.	1.5	CO1
Q 16	Define QSAR in context of rational drug design.	1.5	CO2
Q 17	Define Taft's steric parameter.	1.5	CO2
Q 18	List the scenarios in which ligand-based drug design will be the preferred method for drug design.	1.5	CO2
Q 19	Define a pharmacophore.	1.5	CO2

Q 20	List any THREE biological activities of flavones.	1.5	CO3
	Section B		
	(4Qx5M=20 Marks)		
Q 1	List FIVE classes of drug biotransformation reactions with ONE	5	CO1
	example for EACH class.		
Q 2	Q 2 List FIVE disadvantages of Hansch analysis.		CO2
Q 3	23 Illustrate the steps involved in pharmacophore modeling using a		CO2
	flow chart.		
Q 4	Differentiate molecular mechanics and quantum mechanics based	5	CO2
	molecular modeling methods.		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	The QSAR equation relating the insecticidal activity of a series of	15	CO2
	diethyl phenylphosphonates versus σ is shown below. Interpret the		
	QSAR equation in chemical, pharmacological and statistical terms.		
	$Log(1/C) = 2.282 \sigma - 0.348 (r2 = 0.952, r = 0.976, s = 0.286)$		
Q 2	Discuss in detail the medicinal chemistry of sulfonylureas.	15	CO4
	Section D		
	(2Qx10M=20 Marks)		
Q 1	Discuss any FIVE steps involved in 3D QSAR.	10	CO2
Q 2	Discuss any FIVE biological applications of alkaloids.	10	CO3