Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Bioenergetics and Enzyme Technology Program: B.Tech. Biotechnology Course Code: HSBT 2007 Semester : IV Duration : 3 Hours Max. Marks: 100

Instructions: Read and attempt all questions carefully.

S. No.	Section A	Marks	Cos
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Multiple forms of the same enzymes are known as	1.5	CO1
	(A) Zymogens		
	(B) Isoenzymes		
	(C) Proenzymes		
	(D) Pre-enzymes		
Q 2	A sigmoidal curve of substrate concentration [S] Vs reaction	1.5	CO1
	velocity (V) may indicate		
	(A) Michaelis -Menten kinetics		
	(B) Co-operativity binding		
	(C) Competitive inhibition		
	(D) Non-competitive inhibition		
Q 3	Which bond is not associated with Enzyme-substrate	1.5	CO1
	interaction?		
	(A) Hydrogen bonds		
	(B) Ionic bonds		
	(C) Di-sulfide bonds		
	(D) Van deer Waal's force of attraction		
Q 4	What information does a Lineweaver-Burk plot provide that a	1.5	CO1
	typical Michaelis-Menten plot does not?		
	(A) Vi		
	(B) Km		
	(C) Kcat		
	(D) None of these answers		
Q 5	Induced fit model of enzyme action was proposed by	1.5	CO1
-	(A) Emil Fischer		
	(B) Daniel Koshland		
	(C) Peter Mitchel		
	(D) Marie Curie		
Q 6	When the velocity of enzyme reaction equals to Vmax,	1.5	CO1
	substrate concentration [S] is		
	(A) Half of Km		
	(B) Equal to Km		

	(C) Twice the Km		
	(D) Far above the Km		
Q 7	Regulation of some enzymes by covalent modification involves	1.5	C01
	addition or removal of		
	(A) Acetate		
	(B) Sulfate		
	(C) Phosphate		
	(D) Nitrogen		
Q 8	Memorize the formula of specific activity.	1.5	CO1
Q 9	Isomerases are the enzymes which catalyze transfer of	1.5	CO1
	functional groups (True/False).		
Q 10	Recall name of enzyme used for detergent industry.	1.5	CO1
Q 11	Recall the name of a scientist who found that gastric juice can	1.5	CO2
	digest dietary proteins.		
Q 12	What is binding energy?	1.5	CO2
	(A) Free energy released in the formation of enzyme-substrate		
	interaction		
	(B) The energy required to form a bond		
	(C) The energy required to bind substrate		
	(D) It is the activation energy		
Q 13	In enzyme substrate interactions, Enzyme led to change in	1.5	CO2
	reaction equilibrium (True/False)		
Q 14	Amylase is the enzyme that breaks down into	1.5	CO2
Q 15	For a spontaneous reaction to occur, $\Delta G>0$ (True/False) Explain.	1.5	CO2
Q 16	Recall the formula of specificity constant.	1.5	CO2
Q 17	Enlist name of enzyme and its microbial source used in	1.5	CO2
-	poultry industry.		
Q 18	Explain exothermic reaction with example.	1.5	CO2
Q 19	Define turnover number (kcat).	1.5	CO2
Q 20	Define ribozymes with an example.	1.5	CO2
<u> </u>			
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Define enzyme immobilization. Why is there need of	2+3	CO1
	immobilization of enzymes?	_	
Q 2	Label the below given diagram:	5	CO1

	Concentration B Concentration A Time		
Q 3	Explain the role of enzymes in diagnostics with an example.	5	CO2
Q 4	Discuss the regulation of enzyme activity by feedback	3+2	CO2
	inhibition with an example.		
	Or		
	Derive Lineweaver-Burk plot from Michaelis- Menten		
	equation and write it's a significance.		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Define isozymes. Define the role of active site in enzyme	2+3+10	CO3
	substrate interactions. Differentiate between lock and key		
Q 2	hypothesis and induced fit model.	10+5	CO4
¥ 4	Derive Michalis-Menten equation and discuss the significance of Km and Vmax.	1075	0.04
	Significance of Kin and vinax. Section D		
	(2Qx10M=20 Marks)		
Q 1	Define allosteric enzymes. How do allosteric enzymes	3+2+5	CO3
Υ.	differ from enzymes which follow Michaelis-Menten	01410	
	equation? Discuss the sequential model to explain co-		
	operativity mechanism.		
Q 2	Compare and contrast different kinds of enzyme inhibitions with suitable examples.	10	CO4