Name:

Enrolment No:

LIPES										
End Semester Examination. May 2024										
Program Name: B. Tech-Food Tech. and Bio-Medical Engineering Semester : IV										
Course	Name : Heat and Mass Transfer	Time	: 03 hrs.							
Course	Code · MECH2037	May Marks: 100								
Nos of	nage(s) : 0?	WIAX, WIAIKS, 100								
Instructions: Attempt All Questions One question from section R and C have an internal choice										
Assume any missing data if required and mention it clearly.										
SECTION A										
(5Qx4M=20Marks)										
S. No.	Statement of question	Marks	СО							
Q1	Distinguish between natural and forced convection by taking suitable examples.	4	CO1							
Q2	Explain the Fourier's Law of heat conduction.	4	CO1							
Q3	Discuss Fick's law for mass transfer.	4	CO2							
Q4	Explain the factors influencing the rate of absorption and absorption. Illustrate your answer with relevant examples from industrial processes.	4	CO3							
Q5	What is Molecular Diffusivity? How it is important in determining the rate of mass transfer.	4	CO4							
SECTION B										
(4 Q x10 M = 40 Marks)										
Q6	A composite cylinder is made of 6 mm thick layers each of two materials of thermal conductivities of 30 W/m°C and 45 W/m°C. The inside is exposed to a fluid at 500°C with a convection coefficient of 40 W/m ² °C and the outside is exposed to air at 35°C with a convection coefficient of 25 W/m ² K. Determine the heat loss for a length of 2 m and the surface temperatures. Inside diameter is 20 mm.	10	CO2							
Q7	Explain the mechanism of film condensation heat transfer on vertical surface.	10	CO3							
Q8	Consider the flow of oil at 20°C in a 30-cm-diameter pipeline at an average velocity of 10 m/s. A 200-m-long section of the pipeline passes through icy waters of a lake at 0°C. Measurements indicate that the surface temperature of the pipe is very nearly 0°C. Disregarding the thermal resistance of the pipe material, determine (a) the temperature of the oil when the pipe leaves the lake, (b) the rate of heat transfer from the oil, and (c) the pumping power required to overcome the pressure losses and to maintain the flow of the oil in the pipe. (Take following properties:	10	CO3							

	dens	sity=888	8 kg/m^3 , vi	iscosity= 901*	$10^{-6} \text{ m}^2/\text{s}, \text{ k}=0$	0.145 W/m ⁰ C, spec	ific				
	heat	= 1880 .	J/Kg ⁰ C, Pr	=10400.							
Q9	Ded	uce mat	hematical	formulation fo	r three-dimens	sional heat conduct	ion				
	equation with internal heat generation in cylindrical coordinates.										
	OR								CO4		
	Ded	Deduce mathematical formulation for three-dimensional heat conduction									
	equa	ation wit	th internal	heat generation	n in spherical o	coordinates.					
SECTION-C											
(2Qx20M=40 Marks)											
Q10	Hot water at an average temperature of 90°C is flowing through a 15-m										
	sect	ion of a c	cast iron pi	pe (k =52 W/m	° C) whose inr	her and outer diame	ters				
	are 4 cm and 4.6 cm, respectively. The outer surface of the pipe is exposed to the cold air at 10°C in the basement, with a heat transfer coefficient of										
	15 V	$N/m^{2\circ}C.$. The heat	transfer coeffic	cient at the ini	ner surface of the p	oipe	e 20	CO3		
	is 1	20 W/m	^{2°} C. Taki	ng the walls o	f the basemen	nt to be at 10°C at	lso,				
	dete	rmine th	ne rate of	heat loss from	the hot water	r. Also, determine	the				
	aver	age velo	ocity of th	e water in the	pipe if the ten	nperature of the wa	ater				
	drop	os by 3°C									
Q11	Ane	economi	zer in a bo	iler has flow of	f water inside t	he pipes and hot ga	ises				
	on the outside flowing across the pipes. The flow rate of gases is 2,000										
	tons/hr and the gases are cooled from 390°C to 200°C. The specific heat										
	of the gas is 1005 J/kg K. Water is heated (under pressure) from 100°C to										
	220°C. Assuming an overall heat transfer coefficient of 35 W/m^2K										
	dete	rmine th									
	W 7-4										
	Water flows at a velocity of 1 m/s through a pipe of 25 mm ID and 30 OD								CO4		
	and 3 m length. Air at 30°C flows across the tube, with a velocity of 12										
	III/S.	noroturo	The there	rature of the	water is ou C	\sim . Determine the constant of 12 W/m					
	Eluid Density Kinematic Droudtl Thermal										
		riulu	(ka/m^3)	Viscosity	Number	Conductivity					
				(m^2/s)		(W/m k)					
		Water	990	$0.5675*10^{-6}$	3.68	0.63965					
		Air	1.2	16.96*10 ⁻⁶	0.699	0.02756					
1											