Name:	
Enrolment No:	WUL E 2

UPES

End Semester Examination, May 2024

Course: Medicinal Chemistry-I Semester: VI **Duration: 03 Hours** Program: B. Pharm **Course Code: BP402T** Max. Marks: 75

Instructions: No additional material like graph paper, log table, etc is allowed for this examination.

SECTION A

	$(20 Q \times 1 M = 20 Marks)$					
S. No.	Attempt all questions from section A.	Marks	COs			
Q 1	Define Bioisoster with an example.	1	CO1			
Q 2	Carbachol differs from acetylcholine by	1	CO1			
	a) Ester					
	b) Amide					
	c) Chloro group					
	d) Hydroxyl group					
Q 3	Generally, drugs are absorbed in which form?	1	CO2			
	a) In ionized form					
	b) In unionized form					
	c)In both of above form					
	d)In none of above form					
Q 4	is the NSAIDs drug, which anthranilic acid derivative.	1	CO2			
	a) Mefenamic acid					
	b) Ibuprofen					
	c) Piroxicam					
	d) Zomepirac					
Q 5	Choose the basic nucleus present in the sympathomimetic agents.	1	CO2			
	a) Catechol nucleus					
	b) Benzyl nucleus					
	c) Naphthol					
	d) Indole					
Q 6	Draw the structure of Ibuprofen.	1	CO3			
Q 7	Ultra-short-acting Barbiturates.	1	CO3			
	a) Phenobarbitone					
	b) Butobarbitone					
	c) Pentobarbitone					
	d) Thiopentone					
Q 8	Enlist Phase-I reactions.	1	CO3			
Q 9	The most significant protein involved in binding with drug is	1	CO3			
	a) Albumin					
	b) Glycoprotein					
	c) Lipoprotein					
	d) Globulin					
Q 10	Replacement of oxygen at C-2 position of barbituric acid by a sulfur atom	1	CO3			
	a) Has no change in the activity					
	b) Increases the activity					
	c) Decreases the activity					
	d) Show anxiolytic activity					

fy cholinergic receptors. Explain the catabolism of acetyl choline and the SAR of acting para-sympathomimetic agent. the biosynthesis, metabolism and classification of nor-adrenaline. Write the SAR energic agents. e sedative and hypnotics. Classify them and explain the SAR of barbiturates. SECTION-C (35 Marks) (7 Q x 5 M = 35 Marks) apt any seven questions from section C. ss SAR and Classification of Morphine Analogs.	(6+4) (2+8) Marks	CO3 CO4 CO1
fy cholinergic receptors. Explain the catabolism of acetyl choline and the SAR of acting para-sympathomimetic agent. the biosynthesis, metabolism and classification of nor-adrenaline. Write the SAR energic agents. the sedative and hypnotics. Classify them and explain the SAR of barbiturates. SECTION-C (35 Marks) (7 Q x 5 M = 35 Marks)	(2+8)	
fy cholinergic receptors. Explain the catabolism of acetyl choline and the SAR of acting para-sympathomimetic agent. the biosynthesis, metabolism and classification of nor-adrenaline. Write the SAR energic agents. e sedative and hypnotics. Classify them and explain the SAR of barbiturates. SECTION-C (35 Marks)	, ,	
fy cholinergic receptors. Explain the catabolism of acetyl choline and the SAR of acting para-sympathomimetic agent. The biosynthesis, metabolism and classification of nor-adrenaline. Write the SAR energic agents. The sedative and hypnotics. Classify them and explain the SAR of barbiturates.	, ,	
fy cholinergic receptors. Explain the catabolism of acetyl choline and the SAR of acting para-sympathomimetic agent. the biosynthesis, metabolism and classification of nor-adrenaline. Write the SAR energic agents.	, ,	
fy cholinergic receptors. Explain the catabolism of acetyl choline and the SAR of acting para-sympathomimetic agent. the biosynthesis, metabolism and classification of nor-adrenaline. Write the SAR	(6+4)	CO3
fy cholinergic receptors. Explain the catabolism of acetyl choline and the SAR of acting para-sympathomimetic agent.		
fy cholinergic receptors. Explain the catabolism of acetyl choline and the SAR of		
<u> </u>	(2+8)	CO2
apt any two questions from section B.	Marks	
$(2 Q \times 10 M = 20 Marks)$	T = =	
SECTION B (20 Marks)		
rosine nucleus		
zodiazepine nucleus		
nzyl nucleus		
echol nucleus		
e the basic nucleus present in the Diazepam.	1	CO2
OOPA		
henylalanine		
Tyrosine		
Alanine		
nine is biosynthesized from	1	CO2
ne of the above		
h		
otinic receptor scarinic receptor		
l choline which has more selectivity towards		
uction of methyl group at alpha (α) position of acetylcholine forms acetyl-α-	1	CO5
thylmalonate with methyl urea	1	007
lonic acid with methyl urea		
thylmalonate and urea		
lonic acid and urea		
uric acid is prepared by the condensation of	1	CO5
ne of the above		20.0
ptophan		
rosine		
nylalanine		
of the following is precursor of adrenaline synthesis?	1	CO5
oro naphthol and propanol		
nol and epichlorohydrin		
aphthol and chloropropanol		
aphthol and epichlorohydrin	1	004
anolol is prepared by condensing	1	CO4
type of ring system found in Diazepam?	1	CO1
the structure of Aspirin.	1	CO1
the structure of carbachol.	1	CO1
the structure of Phenylephrine.	1	CO1
	the structure of Phenylephrine. the structure of carbachol. the structure of Aspirin. type of ring system found in Diazepam?	the structure of carbachol. 1 the structure of Aspirin. 1

Q 2	Explain the catabolism of acetyl choline and explain the SAR of direct acting	5	CO2
	parasympathomimetic agent.		
Q 3	Classify general an aesthetics with examples. Outline the synthesis of Ketamine.	(3+2)	CO3
Q 4	What are hydantoins? Write the chemistry of hydantoins.	(2+3)	CO4
Q 5	Write the biosynthesis of acetylcholine.	5	CO4
Q 6	Give an account on inhalation anesthetics.	5	CO4
Q 7	Discuss in detail SAR of Benzodiazepines.	5	CO4
Q 8	Discuss in detail SAR of Benzodiazepines.	5	CO5
Q 9	Give an account on reversible and irreversible Cholinesterase inhibitors.	5	CO5