Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Computational Biology and Bioinformatics Program: B.Sc. Microbiology Course Code: HSMB2010 Semester : IV Duration : 3 Hours Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCO/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Application of bioinformatics include	1.5	CO1
	a) Data storage and management		
	b) Drug designing		
	c) Understand relationships between organisms		
	d) All of the above		
Q 2	What are literature databases. Given an example.	1.5	CO1
Q 3	Which of the following database is a gene expression database	1.5	CO1
	a) GEO		
	b) MMDB		
	c) DDBJ		
	d) d) EMBL		
Q 4	Which of the following is the replacement of a single amino acid in	1.5	CO1
	the primary structure of a protein with another single amino acid,		
	which is accepted by the processes of natural selection.		
	a) PAM		
	b) BLOSUM		
	c) Pairwise		
	d) Multiple		
Q 5	What is a FASTA file format?	1.5	CO1
Q 6	Which of the following is an example of Homology and similarity	1.5	CO2
	tool?		
	a) BLAST		
	b) Kasivioi		
	d) PROSPECT		
Q 7	What is the significance of scoring matrices?	1.5	CO2
Q 8	What do you mean by unrooted phylogenetic tree?	1.5	CO2
Q 9	"Both rooted and unrooted trees can be either bifurcating or	1.5	CO2
	multifurcating".		
	a) True		

	b) False		
Q 10	Which of the following statements is FALSE?	1.5	CO2
	a) In bioinformatics, the BLOSUM (BLOcks SUbstitution Matrix)		
	matrix is a substitution matrix used for sequence alignment of		
	proteins.		
	b) BLOSUM matrices are used to score alignments between		
	evolutionarily divergent protein sequences.		
	c) All BLOSUM matrices are based on observed alignments; they		
	are not extrapolated from comparisons of closely related		
	proteins like the PAM Matrices.		
	d) None of the above		
Q 11	Proteomics is the study of	1.5	CO3
	a) Set of proteins		
	b) Set of proteins in a specific region of the cell		
	c) Entire set of expressed proteins in a cell		
0.10	d) None of these	1 -	001
Q 12	What is the approximate genome size of Arabidopsis?	1.5	CO3
Q 13	Which types of interactions are present in the tertiary structure of	1.5	CO3
	protein		
Q 14	How many genes does the human genome contain?	1.5	CO3
Q 15	What is the difference between PAM and BLOSUM?	1.5	CO3
Q 16	Which of the following does not affect the stability of an α -helix?	1.5	CO4
	a) Electrostatic repulsion		
	b) Bulkiness		
	c) Interaction between R groups spaced three residues apart		
0.1	d) Occurrence of alanine and glycine residues		<u> </u>
Q 17	Which of the following is not true about secondary protein	1.5	CO4
	structure?		
	a) The hydrophilic/hydrophobic character of amino acid residues is important to secondary structure		
	b) The ability of peptide bonds to form intramolecular hydrogen		
	bonds is important to secondary structure		
	c) The alpha helix, beta pleated sheet and beta turns are examples		
	of protein secondary structure		
	d) The steric influence of amino acid residues is important to		
	secondary structure		
Q 18	Which of the following is also known as "Dihedral angles"?	1.5	CO4
	a) Right angles		
	b) Obtuse angles		
	c) Acute angles		
	d) Torsion angles		
Q 19	Ramachandran plot can be used to predict which of the following	1.5	CO4
	structure?		
	a) Quaternary structure		

	b) Tertiary structure		
	c) Primary structure		
	d) Secondary structure		
Q 20	"Left-handed α -helix allowed region" is present in which of the	1.5	CO4
	following quadrants of Ramachandran plot?		
	a) Fourth quadrant		
	b) Third quadrant		
	c) Second quadrant		
	d) First quadrant		
	Section B		
	(4Qx5M=20 Marks)		
01	Explain the BLAST tool at NCBL What is the significance of the E	5	CO1
×-	value or expected value resulting from a blast?	C	001
02	Compare pairwise and multiple sequence alignment	5	CO2
03	Write a short note on diversity of genomes	5	CO3
04	With the help of a neat and labelled diagram, explain energy	5	CO4
	minimizations and evaluation by Ramachandran plot		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Case Study:	4+4+4+3	CO3
	The study involves the comparative analysis of genomic data from		
	three distinct organisms representing viral, prokaryotic, and		
	eukaryotic domains. We will explore the organization, composition,		
	and functional significance of their genomes, transcriptomes, and		
	proteomes, as well as employ advanced proteomic techniques to		
	characterize protein expression profiles.		
	Record on your understanding of omics, answer the following		
	duestions		
	A) Describe how the study of genomes transcriptomes and		
	proteomes can be helpful in exploration of diversity across		
	different domains of life.		
	B) Which public databases can be used for genomics and		
	transcriptomics data acquisition?		
	C) What are the advanced proteomics techniques to analyze protein		
	expression profiles?		
	D) List major features of viral, prokaryotic, and eukaryotic		
	genomes.		
Q 2	Case Study:	4+4+4+3	CO4
	The study involves the structural characterization of a target protein		
	implicated in a specific disease pathway. We will employ		
	computational modeling techniques to predict the protein's		

	structure, assess its stability through energy minimization, and		
	evaluate its conformational quality using Ramachandran plot		
	analysis. Finally, we will explore how knowledge of the protein		
	structure can inform the design of small molecule inhibitors as		
	notential therapeutics		
	potential inclupedites.		
	Based on your understanding of protein structure prediction, answer		
	the following questions		
	A) Explain hierarchical organization of protein structures,		
	including motifs, folds, and domains.		
	B) Which bioinformatics tool and algorithms can help us		
	predict 3D structure of protein based on its amino acid		
	sequence		
	C) Describe the process of energy minimization in protein		
	structure refinement.		
	D) Discuss the role of protein structure in rational drug design.		
	Section D		
	(2Qx10M=20 Marks)		
Q1	A) What is MALDI TOF spectroscopy? Explain its working	5+5	CO3
-	principle.		
	B) Discuss the applications of MALDI-TOF mass spectrometry in		
	clinical diagnosis		
02	A) What is the Ramachandran plot, and how is it used to evaluate	4+3+3	CO4
C	the quality of protein structures?		
	B) Describe the interpretation of the Ramachandran plot in terms		
	of allowed and disallowed regions for $hi (\phi)$ and $hi (\psi)$ torsion		
	angles		
	C) Discuss the implications of Ramachandran plot analysis for		
	protein structure validation		
	protein su deture validation.		