Name:

Enrolment No:

	UPES									
End Semester Examination, May 2024										
Cours	e: Fundamentals of Biostatistics Semester	: II								
Progr	: 3 Hours									
Cours	: 100									
Instru 1. 2.										
3.	Attempt any four questions from section B.									
4.	In section C, Q1 has an internal choice.									
5.	In section D, Q1 has an internal choice.									
S.	Section A	Marks	COs							
No.	Short answer questions/MCO/T&F									
	$(200 \times 1.5 M = 30 Marks)$									
1	Who among the following is known as father of Biostatistics:	15	CO1							
-	a Nevman	1.0	001							
	b. Adolphe Queste									
	c Francis Galton									
	d. Willam Gosset									
2	Sample is regarded as a subset of:	1.5	CO1							
	a. Data									
	b. Set									
	c. Population									
	d. Distribution									
3	Define nominal, ordinal, discrete, and continuous variables.	1.5	CO1							
4	Both qualitative and quantitative data can be displayed using a graph.	1.5	CO1							
5	The primary goal of descriptive statistics is:	1.5	CO1							
	a. To test hypothesis.									
	b. To establish causality.									
	c. To make inferences about population.									
	d. To summarize and describe data.									
6	The sum of deviations of items taken from their arithmetic mean is: 1.									
	a. minimum									
	b. maximum									
	c. zero									

	d. not defined		
7	Mention the formulas of mean, median and mode for grouped data.	1.5	CO2
8	Differentiate between mean deviation and standard deviation.	1.5	CO2
9	If median of a grouped data is 72 and mean is 78, then mode will be.	1.5	CO2
	a. 53		
	b. 32		
	c. 60		
	d. 17		
10	For the Poisson distribution find the standard deviation if mean is 4.	1.5	CO2
11	Differentiate between Binomial and Poisson distributions.	1.5	CO3
12	The independent variable is used to explain the dependent variable in:	1.5	CO3
	a. Multiple regression analysis		
	b. Linear regression analysis		
	c. Non-linear regression analysis		
	d. None of the above		
13	If $r = 0.817$, $b_{xy} = 0.75$, then what will be the value of b_{yx}	1.5	CO3
	a. 0.741		
	b. 0.817		
	c. 0.752		
	d. 0.613		
14	The correlation for the values of two variables moving in the opposite	1.5	CO3
	direction is:		
	a. Perfect positive		
	b. Negative		
	c. Positive		
	d. No correlation		
15	Three coins are tossed simultaneously. The probability of getting at least one	1.5	CO3
	head or one tail is:		
	a. 1/8		
	b. 3/8		
	c. 6/8		
	d. 8/8		
16	The difference between Type I and Type II error is:	1.5	CO4
	a. Type I error occurs when the null hypothesis is correctly rejected, while		
	Type II error occurs when the null hypothesis is correctly accepted.		
	b. Type I error occurs when the alternative hypothesis is incorrectly		
	rejected, while Type II error occurs when the alternative hypothesis is		
	incorrectly accepted.		

	c. Type I error occurs when the null hypothesis is incorrectly rejected,											
	while Type II error occurs when the null hypothesis is incorrectly											
	accepted.											
	d. Type I error occurs when the alternative hypothesis is correctly rejected,											
	while Type II error occurs when the alternative hypothesis is correctly											
	accepted.											
17	Which statistical test is used to determine the association between two	1.5	CO4									
	categorical variables?											
	a. Correlation coefficient											
	b. Chi-square test											
	c. Regression analysis											
	d. ANOVA											
18	What does SPSS stand for?	1.5	CO4									
19	In SPSS, variables names are case sensitive.	1.5	CO4									
	a. True											
	b. False											
20	In SPSS thecommand provides a list of available charts:	1.5	CO4									
	a. rank case.											
	b. categorize variable.											
	c. Both a and b.											
	d. gallery											
Section B												
• • •	(4Qx5M=20 Marks)											
Attem	ipt any four questions.		604									
QI	Define the following:	5	CO4									
	a. Confidence finitian b. Null and alternate hypothesis											
	e small sample test											
02	If the probability of an individual suffering a bad reaction from a particular	5	CO2									
C	injection is 1/1000, determine the probability that out of 2,000 individual											
	(i) exactly three (ii) more than two individual will suffer a bad reaction.											
Q 3	Mean of 100 items is found to be 30. If at the time of calculation, two items are	5	CO2									
	wrongly taken as 32 and 12 instead of 23 and 11, find the correct mean.											
Q 4	Calculate the arithmetic mean, standard deviation, and variance of the height	5	CO2									
	of 230 children with the help of the values given below:											
	$A(assumed mean) = 105, \sum fd^2 = 75,300, \sum fd = 1250$											
Q 5	A simple correlation coefficient between temperature x_1 , corn yield x_2 , and	5	CO3									
	rainfall x_3 is $r_{12} = 0.59$, $r_{13} = 0.46$, and $r_{23} = 0.77$. Find the coefficient											
	multiple correlation $R_{1.23}$.											
	Section C											

(2Qx15M=30 Marks) Question no. 1 has an internal choice														
O 1 The Haemoglobin levels of three groups of children fed three different diets 15 CO														
Q I	are given below. Test whether the means of these three groups differ													
	are given below. Test whether the means of these three groups differ													
	significantiy.													
		fad with three different diets												
		Group 1	Group II											
		11.6	11.2	9.8										
		10.3	8.9	9.7										
		10.0	9.2	11.5										
		11.5	8.8	11.6	_									
		11.8	8.4	10.8	_									
		11.8	9.1	9.1	_									
		12.1	6.3	10.5	_									
		10.8	9.3	10.0	_									
		11.9	7.8	12.4	_									
		10.7	8.8	10.7	_									
	11.5 10.0				_									
	T-11-4-11													
	Tabulated value: $F_{0.05}$ for (2, 30)d. f is 3.32													
	OR													
	The following ta	able gives the	figures of mo	onthly drop in aci	dity level and									
	chlorine concentration in a lake water. Apply two-way classification of													
	analysis of varia	ince and inter	pret your resu	lts.										
	Chlorine		A	cidity level										
	concentration	Low	Mediu	m High	Very high									
	Low	22	19	9										
	Medium			8	4									
	High	F(2, c)	- F 14 and I	$\frac{6}{7(2-6)} = 4.76$	$\frac{4}{2}$									
	Tabulated values: $F(2, 6) = 5.14$ and $F(3, 6) = 4.76$ at 5% level of significance.													
Q 2	From the follow	ring table test	the colour of	son's eye is asso	ciated with that of	15	CO4							
	fathers													
			Not light	light	Total									
	Eye colour	Not Light	230	148	378									
	of fathers	Light	151	471	622									
		Total	381	619	1000									
	Given that table	value of χ^2_0	$_{05}^{1001}$ for 1 d.f. is	3.841										
	1	0.	Sec	tion D		1	1							

(2Qx10M=20 Marks)																		
Question no. 1 has an internal choice.																		
Q 1	Apply method of least square to find:													10)	CO3		
	(i) Regression line of y on x																	
	(ii) Regression line of x on y																	
	(iii) The most probable value of y , when x is 10.																	
	x 1 2 3 4 5]				
	у		2		5			3			8			7				
							(OR								-		
	The following table gives the score obtained by 11 students in Statistics and																	
	Physics. F	Find	the co	oeffic	eient	of ra	nk c	orre	latio	n.								
	Scores in	ı		40) 40	5 5	4 6	50	70	80	82	85	85	90	95]		
	Statistics	5																
	Scores in	ı Phy	vsics	45	5 43	5 5	0 4	3	40	75	55	72	65	42	70			
0.1		1	41 0	C" 1	C				1.4	• 1	C		1	T 1		10		<u> </u>
Q 2	The body	leng	th of	fishe	s of a	a spe	cies v	was	obta	ined	from	two	pond	s. The	y were)	CO4
	measured	as fo	ollow	s (in	cm.)	:	1					_						
	Pond A	20	24	20	28	22	20	24	32	24	26							
	Pond B	12	10	8	10	6	4	14	20	10	6							
	Test whether the mean difference in total body length between the two ponds												5					
	of fishes is significant or not.																	
	Tabulated $t_{0.05}$ for 18 degree of freedom is 2.10.																	