Name:

Enrolment No:

UPES

End Semester Examination, April- May 2024

Course: Principles of Biochemistry Program: BSc Microbiology & F N&D Course Code: HSCC1027

Semester : II Duration : 3 Hours Max. Marks: 100

Instructions:

S.	Section A	Marks	Cos
No.	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q1	Define pKa.	1.5	CO1
Q2	The Henderson Hasselbalch equation explains the relationship between-	1.5	CO1
	a.) pH and pOH, b.) pH and logKa, c.) pH and pKa, d.) pOH and pKa		
Q3	Define free energy (ΔG).	1.5	CO1
Q4	An apoenzyme without cofactor is called holoenzyme. True/False	1.5	CO1
Q5	Recall the structure of myristic acid (14:0).	1.5	CO1
Q6	Peptide bond is a	1.5	CO1
	a) Covalent bond, b) Ionic bond. c) Metallic bond, d) Hydrogen bond		
Q7	Define Km.	1.5	CO1
Q8	Define domain.	1.5	CO1
Q9	Non-protein part of enzyme called as	1.5	CO1
Q10	If an organic cofactor binds covalently to an enzyme called as	1.5	CO1
Q11	In which of the following, glucose residues are linked by $\beta(1-4)$ glycosidic	1.5	CO2
	bonds?		
	a) Starch, b) Cellulose, c) Glycogen, d) Amylose		
Q12	Which one is false	1.5	CO2
	a) Fatty acids may be saturated or unsaturated.		
	b) Fatty acids are water soluble.		
Q13	The bond between C-C α and N-C α are called as and,	1.5	CO2
	respectively.		
Q14	Recall Michaelis-Menten equation.	1.5	CO2
Q15	Both cellulose and alpha amylose consist of (1-4) linked D-glucose	1.5	CO2
	units. Despite the similarities, a person having alpha amylose in diet		
	gain weight while person on diet of cellulose will starve. Why?		
Q16	For a spontaneous reaction to occur, $\Delta G>0$ (True/False) Explain.	1.5	CO2
Q17	Define exergonic reactions.	1.5	CO2
Q18	Identify the below given structure:	1.5	CO2

	н Н .0				
	н _{с́н₂} он				
	ĊH ₂				
	S -				
	с́н ₃				
Q19	Define cofactors with example.	1.5	CO2		
Q20	Explain the relationship between chain length of fatty acid and melting	1.5	CO2		
	point.				
	Section B				
(4Qx5M=20 Marks)					
Q 1	Define isoelectric point (pI). The pKa and pKb of an amino acid are 4.2 and	5	CO1		
	9.0, respectively. Calculate the pl of the amino acid.	_	~ ~ ~		
Q 2	What are enzymes. What enzyme does in a reaction?	5	CO2		
	Or				
	Explain biochemistry of changing of straight hair to curling hairs.				
Q 3	Describe lactic acid formation from pyruvate.	5	CO3		
	Or				
	Describe in detail the structure of collagen and its importance.				
Q 4	Derive Henderson Hasselbalch equation. Write the importance of the	5	CO5		
	equation.				
	Section C				
(2Qx15M=30 Marks)					
QI	Differentiate among primary, secondary, tertiary and quaternary	15	003		
02	Structures with examples.	2 12	CO5		
Q 2	Define metabolism. Defend the given below statement (draw the	3+12	05		
	grycorysis painway):				
	One Glucose molecule converted in two molecules of pyruvate				
	through multistep process and net yield is two ATP per glucose.				
Section D					
0.1	(2Qx10M=20 Marks)	7.2	004		
QI	write three steps of ICA cycle where NADH molecules are	7+3	CO4		
	produced.		<u> </u>		
Q2	Define gluconeogenesis. Contrast three steps of gluconeogenesis	2+8	CO4		
	that differ from glycolysis.				
	Or				
	Define lipids. What are fatty acids. Draw the structure of steric acid.	2+2+3+			
	Explain why unsaturated fatty acids liquid and saturated fatty acids are	3			
	waxy in nature at room temperature.				