Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Engineering ThermodynamicsSemester: 2ndProgram: B.Tech Biomedical Engineering/Biotechnology/Food TechnologyDuration: 3 HoursCourse Code: MECH1013Max

Max. Marks: 100

Instructions: Attempt all the questions

S. No.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F (20Qx1.5M= 30 Marks)		
Q1	The purpose of catalysts is to reduce the activation energy of for product formation. Is this statement true or false?	1.5	CO4
Q2	Define homogeneous catalysis.	1.5	CO4
Q3	The fugacity is equal to the pressure in case of ideal gases. Is this statement true or false?	1.5	CO2
Q4	Which of the following is true for molecularity and order of a reaction?a. molecularity and order of a reaction can be fractional values	1.5	CO3
	 b. molecularity and order of a reaction are both related to collisions among molecules c. molecularity and order of a reaction can both be zero d. molecularity and order of a reaction can both have a value of one 		
Q5	Molecularity of a complex reaction is always governed by the slow reaction. Is this statement true or false?	1.5	CO3
Q6	Define a thermodynamic system and surrounding.	1.5	CO1

Q7	All spontaneous thermodynamic processes are characterized	1.5	CO1
	by negative Gibb's free energy. Is this statement true or		
	false?		
Q8	Increasing the reactant surface area results in an increase in	1.5	CO3
	the rate of reaction. Is this statement true or false?		
Q9	Collision theory of chemical reaction is based on classical	1.5	СОЗ
	hard sphere model. Is this statement true of faise?		
Q10	Catalysts increase the rate of reaction without taking part in	1.5	CO4
	the reaction. Is this statement true or false?		
Q11	Refrigeration process works on the principle of heat engine.	1.5	CO1
	Is this statement true or false?		
Q12	Proteins are not responsible for providing structural integrity	1.5	CO2
	to cell membrane. Is this statement true or false?		
Q13	Give the mathematical relationship highlighting Fick's	1.5	CO2
	second law of diffusion.		
Q14	The sodium-glucose transporter is an antiport. Is this	1.5	CO2
	statement true or false?		
Q15	Secondary active transport require energy from	1.5	CO2
	electrochemical gradient. Is this statement true or false?		
Q16	A successful chemical reaction is determined by the	1.5	CO3
	orientation of reactants. Is this statement true or false?		
Q17	Biochemical reactions can be accurately described by the	1.5	CO3
	classical theory. Is this statement true or false?		
Q18	On which principle is the 1 st law of thermodynamics based?	1.5	CO1
Q19	Passive transport occurs against the concentration gradient. Is	1.5	CO2
	this statement true or false?		
Q20	Isochoric processes are characterized by a constant pressure.	1.5	CO1
	Is this statement true or false?		
	Section B		
	(4Qx5M=20 Marks)		
Q 1	Explain the various gas laws and derive an expression of the	5	CO1
	ideal gas behavior.	_	
Q2	Discuss why transition state theory is more efficient than	5	CO3
_	collision theory for explaining reaction kinetics.		
	· · · ·		

Q3	Describe homogeneous and heterogeneous catalysis with suitable examples.	5	CO4
Q4	(a) What is the change in internal energy of 5 moles of monoatomic $Ar_{(g)}$ if its temperature is increased by 40°C?	5	CO1
	(b) If the gas is heated to 200 J, how much work is being		
	done on the system? If temperature now increases to 70°C,		
	what is the entropy of the system?		
	Section C		
	(2Qx15M=30 Marks)		
Q 1	Explain the refrigeration process in detail with the help of a suitable diagram.	15	CO1
Q2	(a) Define fugacity. Estimate the fugacity coefficient if N_2 gas exhibits fugacity of 97.03 atm at temperature and pressure of 0°C and 100 atm respectively.	15	CO2
	(b) Estimate the Gibb's free energy change involved during the active transport of Na ⁺ ions across the cell membrane.		
	provided the outside and inside concentrations are 150 mM		
	and 10 mM respectively. Assume the membrane potential to be 60 mV.		
	Section D		I
	(2Qx10M=20 Marks)		
Q 1	Discuss the various types of passive transport involved in biological membranes. Describe the governing mechanism of passive transport.	10	CO2
Q2	For the reaction $2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$, calculate the following:	10	CO3
	1. Express the rate of reaction in terms of the reactants and product using both mass action law and differential forms.		
	2. At a particular instant if [NO] is decreasing at 0.5 mol/L/s, what is the rate of formation of NO ₂ at that instant?		