Name:

Enrolment No:

UPES

End Semester Examination, May 2024

Course: Mathematics II

Program: B. Tech BT/FT/BME

Course Code: MATH1061

Semester: II

Duration: 3 Hours

Max. Marks: 100

Instructions: Read the following instructions carefully:

- 1. Mention name and enrolment number at the top of question paper.
- 2. Attempt all questions from section A.
- 3. Attempt any four questions from section B.
- 4. In section C, Q7 has an internal choice.
- 5. In section D, Q9 has an internal choice.

S. N.	Section A	Marks	COs
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M=30 Marks)		
1.	The value of $\int_0^1 \int_0^x (x^2 + y^2) dy dx$ is:	1.5	CO1
	a. 1/2		
	b. 1/3		
	c1/2		
	d. $-1/3$		
2.	If double integration in cartesian coordinates is given by $\iint f(x,y)dxdy$ then the value	1.5	CO1
	of the same integral in polar form is:		
	a. $\iint f(r\cos\theta, r\sin\theta) r^2 dr d\theta$		
	b. $\iint f(rsin\theta, rcos\theta) r^2 dr d\theta$		
	c. $\iint f(r\cos\theta, r\sin\theta) r dr d\theta$		
	d. $\iint f(rsin\theta, rcos\theta) rdrd\theta$		
3.	The divergence of a vector $xi + yj + zk$ is:	1.5	CO1
	a. 4		
	b. 0		
	c. 1		
	d. 3		
4.	A vector point function \overline{F} is said to be irrotational if $Div \overline{F} = 0$.	1.5	CO1
	a. True		
	b. False		
5.	The value of $\int_0^1 dx \int_0^2 dy \int_1^2 x^2 yz dz$ is:	1.5	CO1

	a. 0		
	b. $\frac{2}{3}$		
	c. 1		
	d1		
6.	If $f(x)$ and $g(x)$ are analytic functions, then:	1.5	CO2
	a. $\frac{f(x)}{g(x)}$ is always analytic.		
	b. $\frac{f(x)}{g(x)}$ is analytic, whenever $g(x) \neq 0$.		
	3(4)		
	c. $\frac{f(x)}{g(x)}$ is analytic, whenever $f(x) \neq 0$		
	d. None of the above.		
7.	The sufficient condition for $f(z)$ to be analytic is:	1.5	CO2
	a. $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial x}$, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$		
	b. $\frac{\partial u}{\partial y} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial x}$		
	c. $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$, $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$		
	d. None of these		
8.	Define Harmonic function and mention its one property.	1.5	CO2
9.	What do you understand by simply and multiply connection region?	1.5	CO2
10.	If $f(z) = \frac{e^{2z}}{(z+i)(z-i)}$, then the function $f(z)$ is not analytic at:	1.5	CO2
	a. $z = i$ b. $z = -i$		
	b. $z = -i$ c. $z = i, z = -i$		
	· ·		
11.	d. Analytic everywhere If $f(z)$ is analytic inside and an a closed curve C and if z is any point inside C , then	1.5	CO2
11.	If $f(z)$ is analytic inside and on a closed curve C and if a is any point inside C , then, mention the Cauchy integral formula.	1.3	COZ
12.	, ,	1.5	CO2
	For the closed integral $\int_C \frac{4-3z}{z(z-1)(z-2)} dz$, where C is the circle $ z = \frac{3}{2}$, which statement	1.0	
	is true:		
	a. $z = 0, z = 1, z = 2$ lie inside C .		
	b. $z = 0$ only lie inside C .		
	c. $z = 0, z = 1$ lie inside $C \& z = 2$ lies outside C .		
1.0	d. None of these		000
13.	A differential equation is said to be ordinary if it has:	1.5	CO3
	a. One dependent variable.		
	b. More than one dependent variable.		
	c. One independent variable		
1/	d. More than one independent variable. $\frac{dx}{dx} = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$	1 =	CO2
14.	Integrating factor of the differential equation $\frac{dx}{dy} + \left(\frac{1}{y \log y}\right)x = \frac{1}{y}$ is:	1.5	CO3
	ay (ylogy) y		

	a. <i>y</i>		
	b. logy		
	c. ylogy		
	d. 1/y		
15.	The solution of $(D^2 - 4)y = 0$ is:	1.5	CO3
	a. $Ae^{2x} + Be^{4x}$		
	b. $Ae^{2x} + Be^{-2x}$		
	c. $Ae^{4x} + Be^{-4x}$		
	d. $A\cos 2x + B\sin 2x$		
16.	Wronskian of $y_1 = \cos 2x$, $y_2 = \sin 2x$ is given by:	1.5	CO3
	a. 1		
	b1		
	c. 2		
	d2		
17.	Differential equation of the form	1.5	CO3
	$a_0 x^n \frac{d^n y}{dx^n} + a_1 x^{n-1} \frac{d^{n-1} y}{dx^{n-1}} + a_2 x^{n-2} \frac{d^{n-2} y}{dx^{n-2}} + \dots + a_{n-1} x \frac{dy}{dx} + a_n y = Q(x) \text{ is }$		
	known as:		
	a. Legendre's differential equation		
	b. Cauchy's Linear differential equation		
	c. Leibnitz linear differential equation		
	d. None of these		
18.	The particular integral of $(D^2 + 9)y = \sin 4x$ is:	1.5	CO3
	a. $\frac{1}{7}\cos 4x$		
	b. $-\frac{1}{7}\cos 4x$		
	c. $\frac{1}{7}sin4x$		
	d. $-\frac{1}{7}sin4x$		
19.	Mention the order and the degree of differential equation $\left(\frac{d^3y}{dx^3}\right)^2 + y = 0$	1.5	CO3
20.	Mention the name of the nonlinear equation $\frac{dy}{dx} + Py = Qy^n$.	1.5	CO3
	Section B		
	(4Qx5M=20 Marks)		
Attem	pt any 4 questions		
Q 2	Find the analytic region of $f(z) = (x - y)^2 + 2i(x + y)$	5	CO2
			1
Q3	For what values of a and b the differential equation $(y + x^3)dx + (ax + by^3)dy = 0$	5	CO3
Q3	For what values of a and b the differential equation $(y + x^3)dx + (ax + by^3)dy = 0$ is exact? Also, find the solution of the equation.	5	CO3
Q 3	For what values of a and b the differential equation $(y + x^3)dx + (ax + by^3)dy = 0$ is exact? Also, find the solution of the equation. Investigate whether the function $u(x,y) = x^3 - 3xy^2 + 3x^2 - 3y^2 + 1$ is harmonic.	5	CO3

Q 5	Find the complementary function of $(D^4 - 2D^3 + D^2)y = 0$.	5	CO3
Q 6	Evaluate $\int_{10}^{1} \int_{0}^{1/y} y e^{xy} dx dy$.	5	CO1
	Section C		•
	(2Qx15M=30 Marks)		
Q 7	Apply method of variation of parameters to solve the differential equation:	15	CO3
	$(D^2 + 1)y = \frac{1}{\sin x}$		
	OR		
	Find the solution of following Cauchy Euler equation,		
	$x^{2}\frac{d^{2}y}{dx^{2}} + 4x\frac{dy}{dx} + 2y = x^{2} + \frac{1}{x^{2}}$		
Q 8	Change the order of integration and hence evaluate $\int_0^1 \int_{x^2}^{2-x} xy \ dy dx$.	15	CO1
	Section D		•
	(2Qx10M=20 Marks)		
Q 9	Reduce the equation $\frac{dy}{dx} + \frac{2y}{x} = y^2x^2$ to the linear equation of the form $\frac{dy}{dx} + Py = Q$	10	CO3
	where $P \& Q$ are the functions of x only or constant, hence find the solution.		
	OR		
	Find the integrating factor of the equation $\frac{dy}{dx} - \left(\frac{3}{x}\right)y = x^3$ and solve it for y, if $y(1) = \frac{1}{x}$		
	4.		
Q 10	Apply Cauchy integral formula to evaluate $\int_C \frac{z}{(z-1)(z-2)} dz$, where C is $ z-2 = \frac{1}{2}$.	10	CO2