Name:

Enrolment No:

UPES End Semester Examination, May 2024

Course: Biomechanics Semester : 2nd Program: B.Tech Biomedical Engineering Duration : 3 Hours Course Code: HSBE1004

Max. Marks: 100

Instructions: Attempt all the questions

S No	Section A	Marks	COs
5.110.	Section A		
	Short answer questions/ MCQ/T&F		
	(20Qx1.5M= 30 Marks)		
Q 1	Bones are composed of collagen which has a low elasticity	1.5	CO4
	modulus. Is this statement true or false?		
Q2	What do you mean by creep?	1.5	CO3
Q3	Kinetics and Kinematics fall under the broad category of	1.5	CO2
	statics. Is this statement true or false?		
Q4	What model would you use to describe the viscosity	1.5	CO3
	component of a viscoelastic material?		
Q5	Define Poisson's ratio.	1.5	CO3
Q6	Bones will fracture sooner when subjected to slow and	1.5	CO4
	prolonged stress. Is this statement true or false?		
Q7	Define gap healing of bones.	1.5	CO4
Q8	Define permeability of a cartilage.	1.5	CO3
09	When analyzing joint forces, what does the term "torque"	1.5	CO3
X-	refer to?		
Q10	What is Wolff's law in bone mechanics?	1.5	CO4
Q11	What do you mean by biomechanics?	1.5	CO1
Q12	Mention the types of muscles in the human body.	1.5	CO2

Q13	Define statics and dynamics.	1.5	CO2
Q14	Inertia depends on which of the following factors?	1.5	CO2
	a. position		
	b. force		
	c. mass		
	d. velocity		
Q15	Draw the free body diagram of a book kept stationary on a	1.5	CO2
	table. Assume the table to be at rest.		
Q16	The coefficient of static friction is greater than dynamic	1.5	CO2
	friction. Is this statement true or false?		
Q17	What is the degree of freedom of a human arm?	1.5	CO2
Q18	Differentiate between scalar and vector quantities.	1.5	CO2
Q19	Give an instance where Newton's third law is applicable to	1.5	CO2
	human biomechanics.		
Q20	Who among the following is considered as the father of	1.5	CO1
	modern biomechanics?		
	a. Rene Descartes		
	b. Leonardo DaVinci		
	c. Galileo Galilei		
	d. Giovanni Borelli		
	Section B		
	(4QX5M=20 Marks)		
01	Show that the transition from Hockson regime to Newtonian	5	C03
Q I	regime for a viscoelastic tissue occurs over a relavation time	3	03
	given by the ratio of dynamic viscosity and Young's		
	modulus		
02	Discuss the mechanical properties of cartilage from the	5	CO4
	biomechanics perspective	5	04
	someenames perspective.		
Q3	Estimate the resultant vector of a horizontal displacement of	5	CO2
	2.6 km and a vertical displacement of 6.7 km as shown in Fig.		
	1? What is the angle made by the resultant with the horizontal		
	displacement?		

	R 6.7km 9 75.7° 2.6km Fig. 1				
Q5	Consider a person standing on the ground, which offers	5	CO2		
	friction, being pushed with a constant velocity. Show that the				
	1° law of equilibrium is valid in this case.				
	(20x15M=30 Marks)				
Q 1	Discuss the validity of Maxwell model and Kelvin-Voigt	15	CO3		
	model for the prediction of stress relaxation.				
Q2	Estimate the following as per the schematic shown in Fig. 2.	15	CO2		
	I. What will be the acceleration if the athlete gets hit by a wind force of 5 N in a direction opposite to the motion? Assume the ground to offer 1.5 N friction.				

	2. If the athlete was initially running at 5 km/hr, what is the			
	speed after 10 secs of getting hit by the wind?			
	Assume the mass of the athlete to be 60 kg.			
Section D				
(2Qx10M=20 Marks)				
Q 1	Describe the process of indirect bone healing in detail.	10	CO4	
Q2	Write a note on degrees of freedom of a kinematic link.	10	CO2	