Name:

**Enrolment No:** 



## UPES

## End Semester Examination, May 2024

Course: Introduction to Biomedical Engineering Semester: 2

**Program: BT- Biomedical Engineering** 

**Course Code: HSBE1001** 

Duration: 3 Hours Max. Marks: 100

Instructions: Attempt all the questions

| S. No.           | Section A                                                                   | Marks | COs |  |  |  |
|------------------|-----------------------------------------------------------------------------|-------|-----|--|--|--|
|                  | Short answer questions/ MCQ/T&F                                             |       |     |  |  |  |
|                  | (20Qx1.5M= 30 Marks)                                                        |       |     |  |  |  |
| Q 1              | What is ECG?                                                                | 1.5   | CO2 |  |  |  |
| Q 2              | What is Computed Tomography (CT)?                                           | 1.5   | CO1 |  |  |  |
| Q 3              | What are non-ionizing radiations?                                           | 1.5   | CO1 |  |  |  |
| Q 4              | Define Nucleic acids.                                                       | 1.5   | CO4 |  |  |  |
| Q 5              | What are essential and non-essential amino acids?                           | 1.5   | CO2 |  |  |  |
| Q 6              | What are Cardiac pacemakers?                                                | 1.5   | CO2 |  |  |  |
| Q 7              | What are the applications of "Implantable cardioverter-<br>defibrillators"? | 1.5   | CO3 |  |  |  |
| Q 8              | Define "Cardiac resynchronization therapy (CRT)".                           | 1.5   | CO3 |  |  |  |
| Q 9              | Define basic principle of Hemodialysis.                                     | 1.5   | CO3 |  |  |  |
| Q 10             | What is Vascular access surgery?                                            | 1.5   | CO4 |  |  |  |
| Q 11             | Define "AV graft".                                                          | 1.5   | CO4 |  |  |  |
| Q 12             | What is the clinical application of Artificial Kidney Dialyzers?            | 1.5   | CO3 |  |  |  |
| Q 13             | Draw the structure of adenine and guanine.                                  | 1.5   | CO2 |  |  |  |
| Q 14             | What are Phosphodiester Bonds?                                              | 1.5   | CO2 |  |  |  |
| Q 15             | What is the difference in the DNA Packaging in Cells                        | 1.5   | CO1 |  |  |  |
| 0.16             | What is the difference between DNA and RNA?                                 | 15    | CO1 |  |  |  |
| Q 10             | Name two techniques for detection of nucleic acids.                         | 1.5   | CO2 |  |  |  |
| Q 18             | What are primers?                                                           | 1.5   | CO1 |  |  |  |
| Q 19             | Define "point-of-care".                                                     | 1.5   | CO3 |  |  |  |
| Q 20             | Define Protein engineering.                                                 | 1.5   | CO4 |  |  |  |
| Section B        |                                                                             |       |     |  |  |  |
| (4Qx5M=20 Marks) |                                                                             |       |     |  |  |  |

| Q 1 | How do medical x-rays work?                                           | 5  | CO2 |
|-----|-----------------------------------------------------------------------|----|-----|
| Q 2 | Explain the working of Single-frame x-ray tomosynthesis (SFXT)?       | 5  | CO3 |
| Q 3 | How are RNA aptamers selected from random libraries, such as          | 5  | CO4 |
|     | plasmid DNA, and what are the advantages of using aptamers in         |    |     |
|     | biomedical applications?                                              |    |     |
| Q 4 | Explain the structural features of DNA and RNA molecules and          | 5  | CO3 |
|     | how they contribute to their diverse functions in cellular processes? |    |     |
|     |                                                                       |    |     |
|     |                                                                       |    |     |
|     | Section C                                                             |    |     |
|     | (2Qx15M=30 Marks)                                                     |    |     |
| Q 1 | Case Study: Cell & Protein Engineering in Biopharmaceuticals          | 15 | CO2 |
|     | Introduction: In the biopharmaceutical industry, advancements in      |    |     |
|     | cell and protein engineering have revolutionized drug                 |    |     |
|     | development and production. This case study examines a fictional      |    |     |
|     | biotech company, BioGenix, which specializes in developing            |    |     |
|     | novel therapies using cutting-edge cell and protein engineering       |    |     |
|     | techniques.                                                           |    |     |
|     | Company Overview: BioGenix focuses on developing therapies            |    |     |
|     | for rare genetic diseases and oncology. Their flagship product is a   |    |     |
|     | recombinant protein therapy for a rare metabolic disorder. The        |    |     |
|     | company is committed to advancing precision medicine through          |    |     |
|     | innovative cell and protein engineering approaches.                   |    |     |
|     | Case Study Scenario: BioGenix is developing a new therapy for a       |    |     |
|     | rare type of cancer that currently lacks effective treatment options. |    |     |
|     | The therapy involves engineering patient-derived immune cells to      |    |     |
|     | recognize and target cancer cells specifically. Additionally, they    |    |     |
|     | are designing a novel protein-based drug to enhance the minune        |    |     |
|     | 1 What are the key challenges in developing personalized              |    |     |
|     | cell therapies for cancer treatment? (2)                              |    |     |
|     | 2 Discuss the role of protein engineering in enhancing the            |    |     |
|     | efficacy and specificity of cancer therapies (2)                      |    |     |
|     | 3 How can BioGenix ensure the safety and efficacy of their            |    |     |
|     | engineered cell therapy? (2)                                          |    |     |
|     | 4. Explain the process of engineering immune cells for                |    |     |
|     | cancer immunotherapy. What are the critical steps                     |    |     |
|     | involved? (2)                                                         |    |     |
|     | 5. What are the potential ethical considerations associated           |    |     |
|     | with personalized cell therapies, and how can BioGenix                |    |     |
|     | address them? (2)                                                     |    |     |
|     | 6. Describe the importance of optimizing protein stability            |    |     |
|     | and pharmacokinetics in drug development. How can                     |    |     |

|            | protein engineering techniques be employed for this                                                                                                                                                                                                                                                                                                                 |          |            |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------------|
|            | purpose? (2)                                                                                                                                                                                                                                                                                                                                                        |          |            |
|            | 7. What are the regulatory challenges faced by companies                                                                                                                                                                                                                                                                                                            |          |            |
|            | like BioGenix in bringing novel cell and protein-based                                                                                                                                                                                                                                                                                                              |          |            |
|            | therapies to market? (2)                                                                                                                                                                                                                                                                                                                                            |          |            |
|            |                                                                                                                                                                                                                                                                                                                                                                     |          |            |
|            |                                                                                                                                                                                                                                                                                                                                                                     |          |            |
| Q 2        | Explain RNA aptamer and their applications.                                                                                                                                                                                                                                                                                                                         | 15       | CO2        |
|            |                                                                                                                                                                                                                                                                                                                                                                     |          |            |
|            | Section D                                                                                                                                                                                                                                                                                                                                                           |          |            |
|            |                                                                                                                                                                                                                                                                                                                                                                     |          |            |
|            | (2Qx10M=20 Marks)                                                                                                                                                                                                                                                                                                                                                   |          |            |
| Q 1        | (2Qx10M=20 Marks) Describe the process of SELEX (Systematic Evolution of Ligands                                                                                                                                                                                                                                                                                    | 10       | CO3        |
| Q 1        | (2Qx10M=20 Marks)<br>Describe the process of SELEX (Systematic Evolution of Ligands<br>by Exponential Enrichment) and its significance in identifying                                                                                                                                                                                                               | 10       | CO3        |
| Q 1        | (2Qx10M=20 Marks)<br>Describe the process of SELEX (Systematic Evolution of Ligands<br>by Exponential Enrichment) and its significance in identifying<br>aptamers with high affinity and specificity for target molecules.                                                                                                                                          | 10       | CO3        |
| Q 1<br>Q 2 | (2Qx10M=20 Marks)<br>Describe the process of SELEX (Systematic Evolution of Ligands<br>by Exponential Enrichment) and its significance in identifying<br>aptamers with high affinity and specificity for target molecules.<br>How do advances in cell and protein engineering contribute to the                                                                     | 10<br>10 | CO3        |
| Q 1<br>Q 2 | (2Qx10M=20 Marks)<br>Describe the process of SELEX (Systematic Evolution of Ligands<br>by Exponential Enrichment) and its significance in identifying<br>aptamers with high affinity and specificity for target molecules.<br>How do advances in cell and protein engineering contribute to the<br>development of innovative therapies, such as gene editing, cell- | 10<br>10 | CO3<br>CO4 |