
Department of Informatics

School Of Computer Science

UNIVERSITY OF PETROLEUM & ENERGY STUDIES,

A NOVEL SEARCH ALGORITHM FOR COLUMN

BASED SPATIAL DATABASE

A thesis submitted to the University of

Petroleum and Energy Studies

For the Award of

DOCTOR OF PHILOSOPHY

In

Computer Science Engineering

By BHAGWANT SINGH

July 2020

SUPERVISOR

Dr. Kingshuk Srivastava

CO-SUPERVISOR

Dr. Dharmendra.K Gupta

Department of Informatics

School Of Computer Science

UNIVERSITY OF PETROLEUM & ENERGY STUDIES,

A NOVEL SEARCH ALGORITHM FOR COLUMN

BASED SPATIAL DATABASE

A thesis submitted to the University of

Petroleum and Energy Studies

For the Award of

DOCTOR OF PHILOSOPHY

In

Computer Science Engineering

By

BHAGWANT SINGH

 (SAP ID: 500031709) July 2020

SUPERVISOR

 Dr. Kingshuk Srivastava

Assistant Professor-SG SoCS,

UPES, Dehradun, Uttarakhand

CO-SUPERVISOR

Dr. Dharmendra.K Gupta

Professor SOE,

UPES, Dehradun, Uttarakhand

DECLARATION BY SCHOLAR

I hereby declare thai this submission is my own work and that to the best of nw

knowledge and belief. It contains no material previously published or written by

another person nor material which has been accepted for the award of any other

degree or diploma of the university or another institute of higher learning, except

where due acknowledgment has been made in the text.

BHAGWANT SINGH

Date:

Place: Dehradun

PAGE

V|PAGE

ABSTRACT

The Conventional technologies designed in the beginning of the 21st century thrived

mostly on the concept of Rich-Data/Multimedia Data. These data in consideration is

acquired from various sources most of which are mobile devices as well as sensors and other

TPS (transaction processing system) systems. These type of data is handled mostly in few

types of storage systems namely Date Warehouses, Clouds and a newer addition called Data

Lake. One of the major requirement for every dataset is location tagging which was non-

existent a few years back, but has become imperative for any type of contemporary analytical

process. So time stamping and location tagging of every dataset has become paramount in

its importance today.

The degree and depth of the metadata has heightened the cognizance among the

researcher for advancement in infrastructure designed for handling spatial data. “Spatial Big

Data (SBD)” has evolved with evolving V’s of geographical data. Spatial big data has

bolstered the significance of Geographic Information Systems (GIS) in multiple mainstream

community applications for i.e. intelligent route planning for aircraft, Social Media analysis,

Transportation and Navigation system, Disaster management, Urban planning & monitoring,

and Health hazards etc. Increasing influx of user-generated data over open community has

amplified the challenges faced by the ACID based management system in handling SBD.

This transition from ACID to BASE theorem has encouraged the analyst to work with

NoSQL based systems for the processing of SBD.

Storage, search and retrieval are the three main functionality of any database

management system. Column based data fetch and index model (CBDFI) present a novel

algorithm to search spatial big data stored in column database. Proposed algorithm

incorporates innovative location code and inventive hybrid indexer that can change the

outlook of the researcher working with location aware dataset. The current research

compares IL-Quadtree TopK-SK, S2I-Quadtree TopK-Sk, and I3-Quadtree TopK-SK search

algorithm and presents a novel CBDFI search algorithm in comparison to the after mentioned

algorithms.

VI|PAGE

CBDFI model present a unique location code “hs code” which converts and presents

any sexagesimal location into 7 bit code. The model achieves to formulate “hs code” by

calculating the weighted ASCII of each location number and dividing them with prime factor

belonging to p alpha {} superset. This proposed method can generate and retrace location

without any backtracking error. The “hs code” is more compressed then its contemporary

Geohash as it is string of 7 bit whereas latter is string of 9 bit. Hidden markov model present

a probability based mathematical model to traverse from one hs code to another. This

probability model formulate the base line for searching any spatial entity in CBDFI model.

CBDFI model present singleton indexing data structure that can be used for both

textual and spatial indexing hence ensuring the novelty and uniqueness of the purposed

research. CBDFI model generate Hash inverted file to index the keyword in the any SBD.

The indexer presents approximately one-sixth percentage improvement in the execution time

with increasing keywords (above 20000) therefore ascertain its utility in the field of SBD.

CBDFI model utilize Hs-I Quadtree, where each child node is a cluster of 24 different

location hence improving the performance by 24 folds.

CBDFI model incorporate the concept of Pre-fetch table to further improve the

performance of the search algorithms. The keyword in any mentioned top k spatial keyword

search query is compared for most frequent keyword list, global probable keyword list and

local probable keyword list for positive match. Finally, CBDFI model is designed for

Industry 4.0 where the improved fetch time of the presented search mechanism will present

advance solution for location aware services.

Keywords: Spatial Big data, hs code, spatial indexer and Top-K search.

VII|PAGE

ACKNOWLEDGMENT

First and foremost, my all devotions are to my almighty for his countless blessings.

My unrestrained appreciation goes to my advisors; Dr. Kingshuk Srivastava and

Dr. D.K gupta for all the help and support they have extended to me throughout the

course of this work. I simply cannot imagine how things would have proceeded

without their help, support, patience, and contributions. I also extend my special

acknowledgment to Dr. Manish Prateek, Director, SoCSE, UPES, India for his

valuable time in consultations and discussions. I also like to thank Dr. Manas

Ranjan Pradhan and Dr. Venkatardi Meriboina who provided insight and expertise

on search mechanism and their performance parameters which greatly assisted the

research.

I also acknowledge my many colleagues and friends as I had a pleasant, enjoyable

and fruitful company with them. I am also extremely grateful to the celebrated

authors whose noteworthy works have been consulted and referred in my research

work. Finally, I wish to express my gratitude to my family member’s especially my

wife for being patient with me and offering words of encouragement to spur my

spirit at moments of depression.

Bhagwant Singh

VIII|PAGE

TABLE OF CONTENT

DECLARATION BY SCHOLAR………………………………………………….. III

THESIS COMPLETION CERTIFICATE………………………………………... IV

ABSTRACT………………………………………………………………………..... V

ACKNOWLEDGMENT………………………………………………………......... VII

TABLE OF CONTENT…………………………………………………………….. VIII

LIST OF ABBREVIATIONS……………………………………………………..... XI

LIST OF FIGURES………………………………………………………………..... XII

LIST OF TABLES…………………………………………………………………... XIV

LIST OF ALGORITHMS…………………………………………………………... XVI

CHAPTER 1: PARADIGM SHIFT IN SPATIAL DATA ………………………. 1

 1.1 INTRODUCTION ………………………………………………………....... 1

 1.1.1 SPATIAL DATA IN 4 V’S ENVIRONMENT ………………………… 4

 1.1.2 SPATIAL DATABASE MANAGEMENT SYSTEM …......................... 7

 1.1.3 SPATIAL TERMS AND DEFINATION …………................................ 8

 1.2 RESEARCH AGENDA ………………………………………........................ 9

 1.2.1 RESEARCH GAPS …………………………………………………...... 9

 1.2.2 PROBLEM STATEMENT OF RESEARCH ………………………….. 10

 1.2.3 IMPORTANCE OF RESEARCH ……………………………………… 12

 1.3 RESEARCH HYPOTHESIS ……………………………………………........ 12

 1.3.1 RESEARCH QUESTIONS …………………………………………...... 13

 1.4 RESEARCH OBJECTIVES …………………………………………………. 13

 1.5 OUTLINE OF THESIS ………………………………………………………. 14

IX|PAGE

CHAPTER 2: LITERATURE REVIEW ………………………………………….. 16

 2.1 COLUMN DATABASE FOR SPATIAL ENVIRONMENT ……………...… 16

 2.1.1 LITERATURE SURVEY ON DIFFERENT DATABASE USED FOR

SPATIAL DATA PROCESSING …………………………………………….

17

 2.2 LITERATURE SURVEY ON LIMITATION OF EXISTING SYSTEMS

FOR SPATIAL DATA HANDLING …………………………………………….

20

 2.3 SPATIAL SEARCH MECHANISM …………………………………............ 20

 2.3.1 SPATIAL KEYWORD SEARCH …………………………………..…. 21

 2.3.2 STAIAL INDEXER ……………………………………………………. 22

 2.3.3 LITERATURE SURVEY ON DIFFERENT SEARCH MECHANISM 23

 2.4 INFERENCE ………………..………………………………………...……... 25

CHAPTER 3: BASE ALGORITHMS FOR CBDFI MODEL ………………..…. 26

 3.1 DATA CLEANING TECHNIQUES ……………………………………….... 26

 3.2 INDEXING ALGORITHMS FOR SPATIAL BIG DATA ………………….. 27

 3.2.1 INVERTED INDEX ……………………………………………………. 27

 3.2.2 HASHING ……………………………………………………………… 30

 3.2.3 QUAD-TREE ………………………………………...………………… 32

 3.3 CBDFI MODEL …………………………………………………………….... 34

 3.4 INFERENCE ………………..…………………...…………………………... 35

CHAPTER 4: METHODOLOGY ……………………………………………….... 36

 4.1 METHODOLOGY ………………………………………...………………… 36

 4.2 PROPOSED FRAMEWORK …………………………...…………………... 39

 4.3 CONCLUDING REMARK …………………...…………………………….. 43

CHAPTER 5: HS CODE- UNIQUE LOCATION DATATYPE ………………... 44

X|PAGE

 5.1 HS ENCODER ………………………………………………………………. 44

 5.2 HIDDEN MARKOV MODEL FOR HS CODE …………………………….. 64

 5.3 INFERENCE ………………..……………………………………………... 68

CHAPTER 6: CBDFI-SPATIAL SEARCH ALGORITHM ……………………. 69

 6.1 HYBRID Hy-S INDEXER ………………………………………………….. 69

 6.2 CBDFI-SPATIAL SEARCH MODEL …………………………………….... 78

 6.3 Hs-I TREE ………………………………………………………………….... 81

 6.3.1 INSERTION IN Hs-I TREE …………………………………………… 82

 6.3.2 DELETION AND UPDATION IN Hs-I TREE ……………………...... 85

 6.4 CBDFI- SAERCH ALGORITHM ………………………………..………… 86

 6.4.1 ACCURACY …..…………………………………………...………….. 91

 6.4.2 TIME COMPLEXITY ……………………………………………......... 91

 6.5 INFERENCE ………………..………………………………………..……... 92

CHAPTER 7: RESULT AND DISCUSSION ……………………………………. 93

 7.1 RESULTS …………………………………………………………………..... 97

 7.2 DISCUSSION ………………………………………………………...……... 112

CHAPTER 8: CONCLUSION & FUTURE SCOPE …………………………….. 114

 8.1 CONCLUSION …………………………………..……………………......... 114

 8.2 FUTURE SCOPE ………………………………………………………….. 116

REFERENCES ……………………………………………………………………... 117

APPENDIX: A ……………………………………………………………………… 128

XI|PAGE

LIST OF ABBREVIATIONS

ASCII American Standard Code of
Information Exchange

ACID Atomicity, Consistency, Isolation,

Durability

BASE Basically Available, Soft state, Eventual
Consistent.

CAP Consistency, Availability, and Partition
tolerance

CEP Complex event Processing

CBDFI Column Based Data Fetch and Index

GIS Geographic Information System

GPS Global Positioning system

GDB Geo-Database

HMM Hidden Markov Model

Hs Hexa Spatial

Hy-S Hybrid Spatial

Hs-I Hash Spatial Inverted

k-NN k- Nearest Neighborhood
MBR Minimum bounded Rectangle
NoSQL Not SQL
OGC Open Geospatial Consortium
PD Projected Distance
R-DBMS Relational Database Management

System

SBD Spatial Big Data

UAV Unmounted Aerial Vehicle

UTM Universal Transversal Mercator

VGI Volunteered Geographic Information

XII|PAGE

LIST OF FIGURES

Fig. 1-1: Different forms of data………………………………………….

2

Fig. 1-2: Characteristic of Spatial data……………………………………

5

Fig. 3-1: hs-24 Quad tree…………………………………………………

33

Fig. 4-1: Methodology Design diagram………………………………….

37

Fig. 4-2: CBDFI block architecture………………………………………

42

Fig. 5-1: Process flow diagram hs code generation 0-9 bits……………..

47

Fig. 5-2: Process flow diagram for backtracking from hs code………….

49

Fig. 5-4: State transition chat of different state in 8 bit hs code…………

67

Fig. 6-1: Inserting in Hs-I tree……………………………………………

83

Fig. 6-2: CBDFI search Model…………………………………………...

88

Fig. 7-1: Performance of indexes on Linux………………………………

99

Fig. 7-2: Performance of Index on Windows…………………………….

99

Fig. 7-3: Consolidated performance of all the indexing algorithm……….

100

Fig. 7-4: Execution time for formation of pre-fetch table

100

Fig. 7-5: Execution time taken by Geohash and Hs code to create location

code ..

102

Fig. 7-6: Indexing algorithm: No of keyword vs. execution time graph

104

Fig. 7-7: Execution time vs. keywords graph of Hy-s Indexer 105

XIII|PAGE

Fig. 7-8: Execution time vs. no of Indices graph of Hi-S indexer time

107

Fig. 7-9 Performance comparison graph of various search algorithms

109

Fig. 7-10: No. of keyword vs. execution time of CBDFI model for p alpha{}

110

Fig. 7-11: Fetch time of search Algorithm w.r.t. spatial-textual relevance

111

Fig. 7-12: Fetch time of search algorithm w.r.t. to k ..

111

XIV|PAGE

LIST OF TABLES

Table 2-1: Characteristic of Bigdata and its solution……………………………. 17

Table 2-2: NoSQL vrs SQL databases …………………………………………... 17

Table 2-3: Different types of NoSQL Databases ……………………………….. 18

Table 2-4: Different types of Spatial Queries…………………………………… 21

Table 4-1: Methodology and outcome mappings ………………………………. 38

Table 4-2: Topological structure to store hs code oh Hy-S indexer7 …………… 40

Table 5-1: Step by step conversion of location into hs code …………………….. 45

Table 5-2: hs code for 0-90 numbers …………………………………………….. 50

Table 5-3: hs code 0-90 (8bit) …………………………………………………… 52

Table 5-4 hs code pairs and their hexadecimal code……………………………. 52

Table 5-5: hs code and their respective decimal equivalent ……………………. 56

Table 5-6: Final hs code of location …………………………………………….. 57

Table 5-7: Consolidate 7 bit hs code ……………………………………………. 61

Table 6-1: Notation table of CBDFI search model ……………………………… 79

Table 7-1: Configuration of different system used ……………………………… 97

Table 7-2: Execution time on Linux …………………………………………….. 98

Table 7-3: Execution time on windows ………………………………………….. 98

Table 7-4: Execution time on MAC……………………………………………… 98

XV|PAGE

Table 7-5: Geohash vs. Hs code generator ……………………………………… 101

Table 7-6: Performance of indexing algorithms w.r.t keywords ……………….. 103

Table 7-7: Comparison of Geohash vrs Hy-S Indexer w.r.t keywords …………. 105

Table 7-8: Geohash vs. Hy-S Indexer w.r.t Indices …………………………….. 106

Table 7-9: Comparison of existing spatial search algorithms w.r.t ……………… 107

Table 7-10: Comparison of Hs-I tree execution time vrs. No. of keywords ……… 108

Table 7-11: Comparison of CBDFI search algorithm w.r.t. P alpha{} …………… 109

Table 7-12: Comparison of search algorithms w.r.t alpha ………………………... 110

Table 7-13: Comparison of search algorithm w.r.t k ……………………………… 110

Table 7-14: Finding of the CBDFI Search algorithm …………………………….. 112

XVI|PAGE

LIST OF ALGORITHMS

Algorithm 3-1: Generation of hs-24 Quad tree .. 33

Algorithm 3-2: CBDFI model design .. 34

Algorithm 5-1: Generation of hs code ... 46

Algorithm 5-2: Retrieving location from hs code .. 48

Algorithm 5-3: Encoding 12 bit hs code into 6 bit code .. 55

Algorithm 6-1: Hybrid Inverted Index ... 70

Algorithm 6-2: Hybrid hash table .. 75

Algorithm 6-3: Inserting in Hi-S tree ... 84

Algorithm 6-4: CBDFI Search Algorithm……………………………………….90

1 | P a g e

CHAPTER 1

PARADIGM SHIFT OF SPATIAL DATA

1.1 INTRODUCTION

The 21st century is computing data in petabytes and terabytes. Managing spatial

information with accumulative data, results in complex processing and analysis. To provide

tool with the capabilities of handling hetro-type spatial data is a necessity and such data pose

the problems of 1) Data Quality and 2) Ownership of Data [Johnson (2016)]. For optimal

storing of spatial data, data warehouse is a concept but each and every version of the

information extracted from it doesn’t carry the key points about the pervious extraction and the

advancement to be conducted in the future. This results in solution for a particular time window

but correlating with other solution at different time and place turns into a nightmare.

Now a day, advance technologies are rapidly and dynamically generating data which is

readily available for analysis. Engendered data from these devices can capture an instance with

similar intrinsic behavior but registered at diverse location. These non-traditional dataset are

majorly unstructured & semi-structured in nature , hence in the contemporary sprouting data

analyzing scenario these characteristics turn out to be the biggest concern of analysists.

Industry 4.0 is registering progressive technologies, which are engendering humongous

amount of data at exceptional rate (figure1-1) for further analysis. Various organizations identify

information with intrinsic location element, relevant for decision making [Giuliani et.al.

(2011)]. Place complexity of such data can be abridged by introducing location as metadata,

hence exponential increase in data size can be encountered. Eighty percentent of the data is

geotag therefore registering spatial data a necessity [Schade et.al. (2015)]. Studies have shown

that if text + location can recuperate search query. Latest research shows that 12% of the quires

searched over web have place name [Barewar et.al. (2014)].

2 | P a g e

Fig 1-1: Different form of Data

Geographic Information System (GIS); serve as an infrastructural backbone for

capturing storing and analyzing location intrinsic data. The evolved field of cartography,

bought GIS into the limelight. The government of Canada played reformed government

initiatives but utilizing the visualization techniques of GIS. One such initiative was taken by

Roger Tomlinson, an English geographer in mid-1960. Jack Dangermond founder E.S.R.I

(1969), is a leading commercial firm which mostly focused on developing GIS application for

government and commercial sectors. Concomitant technologies of GIS viz. global positioning

systems (GPS) and Radio Frequency Identification Tags (RFID) was expended during Cold

War U.S.A.

Towards the end of 19th century manifold advancements to enhance technical support in

GIS computational systems has enabled multiple GIS related software, based on the principle

of enabling spatial analysis to be financially feasible commodity in competitive market.

Any relational database can be used to store data of such characteristics but storing

3 | P a g e

spatial information result in explicitly defining relationships which result in slower processing.

Geodatabase provide solution to this problem. Geodatabase is built on the concepts of off-the-

shelf database with advance application logic layer which help in storing spatial information

and implicitly generating behavioral relationship. Geodatabase data model have rich collection

of objects and features and these features can be store in four dimensions (x, y. z and m). M

dimensions help in providing metadata for the data and help in bridging the gap between past

and future. The feature of versioning and long transaction help to fetch the data from different

location and facilitate multiple user access.

About 90% of data which are being generated today is unstructured in nature and this

has become a challenge in the sector of analytics. To handle unstructured data the most

prominent and pioneering tool is Hadoop. Many proprietary tools launched in market such as

“IBM Info-Sphere Big Insight” and “MS SQL Server Big Insight” is also incorporating Hadoop

as base architecture. Hadoop has irreplaceable advantage in scalability, robustness, calculated

performance and cost effectiveness with low end hardware support and has become the main

big data analysis platform in the current market. Different kriging algorithm can be applied

over Hadoop to provide solution for spatial estimation or interpolation.

Database management systems have been leading storage technology in market for

decades. One has seen the evolution of database from simple files system to object oriented

relation database management systems. Data vendors are constantly improving the database

management systems but R-DBMS still struggling with large volume of data [Mohan (2013)].

Over the decade every development in database results in more and more level of abstraction

of data. ACID theorem is used to maintain data consistency, however when volume of data is

in petabytes the speed of retrieval of information decelerate. Hence the concept of de-

normalization is luxuriated; it is perceived that for better analysis data should be in 1st normal

form. For this a contemporary technology, NoSQL (not only SQL) databases is introduced.

NoSQL used non-transactional approach called BASE and is able to support larger volumes of

data by providing faster data access and cost savings.

Location pairing is an important and inherent obligation of every service provider

worldwide. Taking in incalculability of the engendered spatial data at an inimitable rate,

probing information turn out to be a decisive job. Diverse web/mobile podiums such as online

directories (yellow pages), social media sites (twitter, Facebook, flicker), web crawlers

4 | P a g e

(Google, Yahoo, Bing), and GPS enables devices (airline, taxi, rail) provide semantic location

aware data of the user. Perception of analogous data with intrinsic location beheld under

different context deliver unlikely fallouts. Hence encouraging the use of advanced and

improved spatial temporal data processing tools are highly suggested. Location aware services

tends to record trajectory of the object to understand cohesive nature of the object in

consideration. For that reason, location get associated with the objects, its different interaction

with environment and review about the activities in the neighborhood. Location and

characteristic keywords can be paired together and research ensuring effective search of

information has been undertaken during the last decade [Hong et al. (2017)] [Zhange et.al.

(2016)][Griffith et.al. (2016)]. Combining spatial search and keyword search has presented

hybrid search mechanism to work with current spatial data known as “Spatial keyword Search”.

Top- K spatial keyword query is one of the most remarkable algorithm used to manipulate

existing spatial data. Over a time, advancements in the Top-K search algorithm to cater

different problems, but no research optimize the latitude and longitude with associated

keyword. Multiple commercial and scientific users are stipulating spatial data to provide

innovative solutions. These geospatial data sets range in terabytes and even in petabytes.

Storing such volume of data is a costlier affair hence new and improved storage technologies

are required to accumulate expanding spatial data. The spatial data is scattered geographically

and is of heterogeneous-typed. Therefor search and analysis of spatial data is foremost concern

of solution providers.

1.1.1 SPATIAL DATA IN 4 V’S ENVIRONMENT

Spatial data are data that inhabits space. Spatial data conveys topological and/or

distance information and spatial indexing and spatial access methods are used for

shaping and editing them. “Everything is related to everything else but near things are

more related than distant things”, served as the essential characteristic of spatial data

[Tobler et.al. (1970)]. Based on the first law of Geology, in order to assist spatial

dependency, spatial autocorrelation was pioneered [Goodchild (1986)]. The second

essential characteristic of spatial data is heterogeneity. Each object in real world plane

exhibit distinctive characteristics, hence revealing that not all spatial data exhibit

stationary characteristics [Barewar et.al. (2014)]. Incomparable fuzzy nature serve as

the third and the last characteristic of spatial. These characteristic of spatial data

5 | P a g e

impersonates various challenges for when the storage and manipulation of such data is

taken in consideration.

Big data is term used to define voluminous datasets measured in petabytes or

terabytes. Big data can be of any type’s structured, semi-structured and unstructured

type. Any data that has the potential to be mined for information can be categorized as

Big Data. It is so huge and complex that analysis, capturing, curation, retrieving,

storing, transferring, and visualizing of such a data turn into nightmare.

Hadoop is a java based framework designed for disseminated processing of

large data set athwart cluster of computers. It was designed to provide fast processing

by detecting and handling failures of computers at the application layer itself. During

the last few years Hadoop has become the mainstream software framework for Big

Data processing. Major operations on spatial data require global indexing but many of

existing big data system for graph data such as MapReduce is designed for relational

database [Doulkeridis et.al. (2014)] and lack systematic framework to use and create

indexes. To overcome this problem of global indexing, HadoopGIS and SpatialHadoop

were introduced.

Geolocation enabled data can be classified as spatial data. Conventional any

spatial data or geographical data, can be divided into two parts the attribute data i.e.

event’s information capturing the details of that event and the spatial data i.e. the

location where the event has occurred (figure 1-2).

Fig. 1-2. Characteristic of Spatial Data

Meer latitude and longitude doesn’t complete “location” data. Various other

topological information such as projection system used to capture the instance, local

Topology Data (
Fuzzy Nature)

Projection Data (

Heterogeneity Characteristic

)

Location Data (Neighbourhood
Characteristic)

Attribute Data

Geographic Data

Spatial Data

6 | P a g e

and global datum and topology also comprehend to location information, hence

handling of spatial data is a complex phenomenon.

The evolution of smart-era has constituent geotagging as a primitive feature of

multiple devices. During the first decade of 20th century an alarming influx of data has

been generated by different social media platforms [Song et.al. (2014)]. Immense pool

of expressed feeling through blogs and tweets, vital information like friend and

important engagement and real experiences shared through social media, results in

enormous data for processing. Global platform such as social media generate the large

real time data over time at fast rate and registering all the different formats of inputs,

result in what has created the concept of Spatial Big data. Various example of spatial

big data include check-ins [Medina et.al. (2012)] by various user globally at the same

time and understanding the epicenter of each check-ins, GPS-tracking of user using

smart devices, Unmanned aerial vehicle (UAV)/Wide area motion imagery (WAMI)

[Medina et.al. (2012)] video and generating roadmaps from various user generated

content, Waze, Open Street Map etc.

Big Data with location as its core property formulate Spatial Big-Data (SBD).

Extend of information produced by spatial big data, can be processed and analysis in

far-fetched manner hence presenting researcher with new filed of spatial analysis.

Justifying captured data as spatial big data depends on the context of data. Micro and

macro analysis of the situation can be comprehend by Spatial Big-Data and deliver

analyst.

Volume: Different digital device present over the World Wide Web or then globe can

accumulate immense for processing and increase the apprehension analysist. Hence the

off the rack data management system need to amend their architecture to process such

voluminous data.

Velocity: Magnitude of sources worldwide are generating endless data at a very fast

rate which support the volume of SBD. This unremitting data generate by various

advance technology worldwide at rapid rate is providing velocity to Big-Data.

Variety: Nowadays, anyone can generate data about any entity in consideration. To

investigate any event an army of modern deceives are supported by the current

7 | P a g e

technology. Therefore most of the registered data are of the same entity but in different

format and are schema less majorly that is unstructured or semi-structured. Large data

traveling from different paths for analysis result in the immense variety of Big- Data.

Veracity: One of the most proficient reason for let-down of the conventional system is

the messiness of the data available for analysis. Pre-processing capability of the system

get highly hampered by the heterogeneous typed nature of data generated.

 1.1.2 SPATIAL DATABASE MANAGEMENT SYSTEM

Spatial data management system is the basic functionality of Geographical

Information System (GIS. To store such data K-tree data structured is used [Barewar

et.al. (2014)], this categorized data object comprise of object class, element class and

element dataset. Object class can be considered as non-spatial data set which includes

the different characteristic of the geographical data. Whereas element class and element

dataset is set which represent geometrical attribute and their respective reference system.

To manage spatial data various features such as spatial position, relationship of

geographic entity, nomenclature, type and quantity of geographic entity and time

features are stored concretely. In spatial database attribute data and graphic data of an

object are integrated together. There are two ways to integrate data either to combine

spatial and attribute data before integrating or integrate attribute and spatial data

separately and then combine them. Various spatial solutions can be provided by both

conventional and unconventional databases. MySQL and Postgre-SQL has

incorporated OGC’s SFS and SFSQL to provide the functionality of spatial analysis, but

face the problem with scalability of the current data. To deal with the large scale of

unstructured data MongoDB, SpatialHadoop, BigTable and CouchDB etc document

based NoSQL based database can be used showcase the concept of geohasing for spatial

indexing [Zhang et.al. (2014)].

“The Geodatabase is unique data format that is similar in structure to coverage

data model and also include the functionality of multiuser editing”. Similar to the

relation Dbms, a geodatabase is the collection of geographic dataset. Geographical

dataset may include features class, raster data, attribute tables relationship between

attribute and relationship between features.

8 | P a g e

A geodatabase is a pool of geographic datasets of several types arranged under

corporate file system folder such as Microsoft Access database, Oracle, Microsoft SQL

Server, PostgreSQL, Informix, or IBM DB2. Principle of Object relational model is used

to design a geodatabase. All the real time entities are stored in rows in form of objects.

Hence it may be said that Geodatabase is off the shell relational Dbms with advance

application logic layer on it.

While storing data in geodatabase one use well defined column type structure.

Along with using standard data type GDB also used extended spatial datatype. This

extended spatial data type is used to store the datum and projection. Geodatabase store

dataset rather than storing data. These dataset can be following different type feature

class, raster dataset, and attribute table. Schema of GIS data is stored using following

main table GDB_Item, GDB_ItemType, GDB_ItemRelationship and

GDB_ItemRelationshipType. GIS deals with data which is extremely large in size and

will be assessed by large number of users. Key concept of geodatabase is to leverage

concepts of R-Dbms and scale it up to meet the requirement of GIS.

1.1.3 SPATIAL TERMS AND DEFINATION

The proposed research highlight various different concepts of spatial data. The

definition of some of the term are as follows:

Column Database: A type of non-conventional database that store data in column

rather than rows

Geo-Database: A relational database used to store, query and manipulate spatial

data. It is also called as Spatial Database

Geo-hashing: It is an encoding technique used to capture the location on the earth

surface in form of a varchar string. More the length of the string precise will be the

location

Global Probable keywords: The most prominent keyword identified for a given

index of hs code is called as Global probable keyword.

Local Probable keywords: The most prominent keyword identified for a given

index of hs-24 code is called as Local probable keyword.

Minimum bounding rectangle: It is the minimum rectangular boundary under which

a given 2-dimentional object can be defined in computer.

9 | P a g e

Most frequent Keyword: The keyword that has the maximum frequency of

occurrence at a given location

NoSQL: These are the conventional data storage and retrieval techniques followed

to store non schematic data in non-tabular format.

Projected Distance: Distance taken to travel from maximum location to minimum

location in any given hs code

Sexagesimal Code: It is base-60 code used to define location in form of Degree.

Hour. Minute and seconds

1.2 RESEARCH AGENDA

The conventional research in the field of Spatial Big Data has provided analyst with

various opportunities to generate new and improve models to cater the need of the current

times. With a number of solutions emphases on improving the efficiency of the existing

solution, this research focus on the design novel spatial search model using user defined

location code and hybrid indexer.

1.2.1 RESEARCH GAPS

Analysis of the SBD faces various challenges while dealing with

conventional infrastructures. Hence the current research plans to provide solution

to the following research gap:

 Spatial data is consider as the attribute data with associated location

value. The conventional R-DBMS system generate extra column of

location of numeric data type hence losing the essence of spatial data.

 Spatial dependency is the integral part of any spatial analysis. The

conventional databases (SQL / NoSQL) adheres to the spatial

dependency either by overlaying logical model or by creating

intermediate layer [Prakhyath et.al. (2015)].

 Spatial data is stored as native data types hence multiple information get

lost while enveloping the location data in such datatypes [Dong-Wan

et.al. (2015)]

 Conventional architecture designed based on r-DBMS is inadequate in

10 | P a g e

catering the needs of SBD.

 All GIS system utilize UTM grid to generate location code in sexagesimal

format either in Degree or in DMS value.

 During the processing of search spatial data store in existing spatial

architecture, Inverted index is used solely to index textual keywords in

the spatial attributes [Zhang et al. (2015)].

 Indexing techniques followed spatial infrastructure treat attribute indexer

as different form location indexer [Zhang et al. (2015)].

On the bases of the above mentioned research gaps the problem statement of

the current research is formulated.

1.2.2 PROBLEM STATEMENT OF RESEARCH

Today’s world is changing dynamically in perspective of handling of ever

increasing data volume. Various devices are generating data for the same

phenomena at different time and location. GIS provides a solution in which each

and every parameter is evaluated against its physical location and time of

generation of data and store such information in Geodatabase data model.

Contemporary “Geodatabases” uses traditional relational-dbms systems which

are designed to work with predominantly structured data and utilize concepts of

normalization for optimal storage. With the paradigm shift of data from

structured to unstructured/semi-structured, the prevailing search techniques need

to be revised. Therefore four different problems are identified in the current

study. These problems are as follows:

1. Additional processing cost of indexing geographic objects are added to

search algorithm [Zhang et al.(2015)]:

While dealing with geographic object both textual and spatial indexing

techniques are required and hence additional implementation and maintenance

cost of the search algorithm. The above identified problems ascertains the

necessity for development of a new and more refined spatial database search

algorithm, which would be able to handle the current requirements more reliably

and promptly.

11 | P a g e

2. Agile nature of the existing data search algorithm while dealing with

paradigm shift:

Present algorithm performs analysis in linear time but spatial data work in cubic

time and hence unable to present desired outcome [Jardak et. al (2014)]. Recent

studies suggested that column database based search algorithm can be optimized

for fast retrieval of spatial objects. [Jardak et. al (2014)].

3. Effect of storing spatial data in pre-defined data types:

Spatial data has two components that are attribute and geographical location.

Attribute can be stored in any standard database schema but while storing

geographic location Blob or Lob datatype are used [Jardak et. al (2014)]. There

is compatibility issue with some GIS software and SQL based storage system.

4. Accuracy rate of processing location for various global issues:

The processing of spatial data always demands additional exercise. One can

either process additional new data or the existing old data. Both of these data

showcase various challenges such as:

• New Spatial Data [Johnson et al (2016)].

• Data Quality

• Ownership of Data

• Old Spatial Data [Kyoon et al.(2006)].

• Miss-registration of data

• Lack of Metadata.

• Non uniform quality.

1.2.3 IMPORTANCE OF THE RESEARCH

During this Pandemic, various different field of analysis has evolved to

provide solutions to the existing problems. The models designed by any research

oriented company thrives to visualize there results on maps that can be addressed

by the masses. Therefore restating the importance of GIS and spatial analysis.

The current research in the field of spatial search algorithm will benefit the

12 | P a g e

society by presenting the novel spatial representing, indexing and searching

techniques. Identification of spatial hotspots are the need of the hours and its

application prospect in the field of Social Media Analytics, Navigation and

Transportation industry, Infrastructure and Urban Regeneration sector is in high

demand. The current research will also share light on the application of NoSQL

based database such as Column database in providing solution for fast searching

of spatial queries. Not just improving the existing infrastructures the current

research will introduce a new location representational techniques which will

change the course of location data processing paradigm. Not but the least the

current research will support in the initiative of spatial data democratization in

India.

1.3 RESEARCH HYPOTHESIS

The current research follow on the associated hypothesis where change in the query

location will alter the outcome of the model. The CBDFI model which will successfully convert

every location into “hs code” and will produce reconversion strategies too. The CBDFI model

will return a positive match from the provided dataset for any mentioned keyword in the spatial

query. And the CBDFI model is a self-learning and self-aware which will positively improve

its efficiency by reducing seek time as the distance from the query keep on increasing.

 1.3.1 RESEARCH QUESTIONS

The current research purpose a novel CBDFI model to search spatial

entity for any given datasets. The model create weighted tree of hs location

superset and search most probable match for the spatial query. Based on the

hypothesis designed for this research the following questions will be answered:

Q1: How to identify the location of the desired entity which lie in the given

distance and meet the query keywords?

Q2: How the CBDFI model will convert the location of spatial entities into “hs

codes” and calculate the probability of each “hs code”?

Q3: How the CBDFI model will identity the most frequent most probable and

most prominent keywords for each given spatial queries.

Q4: From the given search query location how the CBDFI model will generate

Hs- I tree and calculate the weight of traversing among the node and identify

13 | P a g e

the hs-12 node.

The proposed research will plan to answer these questions and based on

the research gaps. Problem statement and research question the objectives of

the research is decided.

1.4 RESEARCH OBEJCTIVES

With the technology advancement in information technology, data processing with

multicore processor and the need of hour to manage the dynamically referred geometric,

geographical data, it is very essential to design novel spatial database architecture with

optimized data search techniques. Hence the objective of the current project is as follows:

“To design a novel search optimization algorithm for Logic based deductive Spatial Database”.

The proposed research will provide one with optimized search algorithm which will overcome

various problems encountered while working with spatial data in the era of Big Data. The

current work will have the following outcomes:

1) To perform comparative study of the existing search algorithm

2) To design and develop novel spatial search algorithm

3) To design datatype for Column based spatial database framework

4) To implement the novel algorithm and test its efficiency with existing standard

search algorithm of spatial database.

14 | P a g e

1.5 OUTLINE OF THE THESIS

The thesis is divided into the following seven chapters:

Chapter 1 Introduces the basics of Spatial Big Data with motivation to the proposed work. It

is followed by the introduction to spatial data characteristics. Chapter also highlight the agenda

of the current research by stating the research gaps, problem and hypothesis. This chapter

present the objective of the current research.

Chapter 2 is devoted to the literature survey conducted to understand the role of various

different database used to store spatial big data. Chapter also states the challenges in processing

spatial big data and explain the evolution various different search indexes and search

mechanism followed to process the spatial data.

Chapter 3 explain the dataset used for the current model. The chapter share light on the

different data cleaning techniques follow in this research. The chapter explain the various

indexing algorithms used for spatial search and explain the custom algorithm followed in this

research.

Chapter 4 describes the methodology followed to achieve this research work. The also

highlight the silent feature of the proposed model for searching spatial data in the given column

driven approach

Chapter 5 presents a unique location code called as the “hs code” which help in presenting the

sexagesimal location into a 7 bit hex code and application to the hidden markov model to

traverse among the code

Chapter 6 describes the spatial index “Hy-S” indexer which can be used for both textual and

spatial indexing. Chapter also highlight the “Hs-I” tree which is a novel data structure used to

store the spatial location. And finally it present the novel search algorithm.

Chapter 7 sums up the results of existing and the proposed methods. It presents a comparison

15 | P a g e

of results of the Geohash and “hs code”. It also present the comparative result of the comparison

of indexer and CBDFI search model with I3 Indexer based top k spatial keyword search.

Chapter 8 concludes thesis with research directions and future scope in spatial data search

followed by bibliography and list of research publications in Appendix A

16 | P a g e

CHAPTER 2

LITERATURE REVIEW

The literature review of the research work has focused on three areas. The first area

identify the various different research carried out globally in the field of database storage

technologies to store and process spatial data. The second part identify the limitation of the

existing system and third part bring insight to the various different search approaches followed

to process spatial data. This chapter identify the problem statement and list of objectives for

this research.

2.1 COLUMN DATABASE FOR SPATIAL ENVIRONMENT

Traditional relational database management systems are inadequate to process large data

in range of petabyte [Mohan (2013)]. In order to achieve faster and cost effective data access

physical architecture of database is reformed. Cluster of inexpensive commodity servers that

force distributed processing are exploited. This new transformation of database is called as

NoSQL i.e. Not Only SQL database. NoSQL database not only provide distributed processing

and inexpensive hardware but presented a different approach to maintain data integrity and

consistency. In distinction to ACID property of RDBMS, NoSQL database exercise CAP

theorem i.e. Consistency, Availability and Partition Tolerance. The downside of CAP is that of

the three possible combinations, only two can be achieved at an instance [Doulkeridis et.al.

(2014)]. Therefore over the time CAP has progressed into BASE (Basically Available, Soft

state and Eventual consistency). Basically Available means that data will be available in spite

data retrieval failed or retrieved data is inconsistent in nature. Soft state means that the data

will keep on changing over time to seek consistency. And Eventual consistency means that

with every update, the database will achieve consistency.

During the beginning, relation database supports notion of uncommitted reads and

different levels of locking therefore accompanying BASE is not crucial issue nowadays.

NoSQL column-family database supplement Schema Read feature. NoSQL database can scale

data both in horizontally and vertically direction [Abramova et. al. (2014)].

17 | P a g e

2.1.1 LITERATURE SURVEY ON DIFFERENT DATABASE USED FOR

SPATIAL DATA PROCESSING

The customary data processing and handling methods has been challenged by the

precipitous growth in data volume [Sun et.al. (2017)]. Eskandari L. et.al.

[Eskandari et.al. (2016)] paper stated that the contemporary technologies are

crafting data at expeditious rate approximately 30,000 Gigabytes per second.

Secondly, report published by international data corporation state that the current

decade (2010-2020) is monitoring doubling of data per year [Giuliani et.al.

(2014)]. Big data analytics is the best solution for working with such kind of data.

Study conducted by Veda C. Storey et.al.; has thoroughly examine the

characteristic of the data and stated which characteristic can be handle by which

domain (technological domain or software domain) [Storey et.al. (2017)].

Table 2-1: Characteristic of Big Data and there solution
Characteristic of Big Data Technology Solution Software Solution

Volume Yes
Velocity Yes Yes

Variety Yes

Veracity Yes

Source: Singh et.al. (2019): Future Prospects and Challenges in Geospatial Database for Handling of Big Data Concept: A Review

 Eric Evans distributed database studies has pointed that data driven

paradigm require radical change in data storage techniques, hence use of NoSQL

database are encouraged [Corbellini et.al. (2017)]. NoSQL is BASE theorem

based data storage mechanism, which follow no fixed schema and provide

horizontal scaling. Study conducted by Veda C. Storey et.al; has mentioned

various different database and their capability to work with BASE theorem table

2-2 [Storey et.al. (2017)].

Table2-2: NoSQL vs. SQL database
Data

-base

Relatio-

nal

Sql-

Quer

y

Colum

n store

Scaling Eventual

Consistency

BAS

E

Large

Data

Volum

e

Schem

a

SQL Yes Yes No Limited - No NO Fixed

NoS
ql

No No Yes Yes(Horizontal) Y
es

Yes Yes Yes

Source: Singh et.al. (2019): Future Prospects and Challenges in Geospatial Database for Handling of Big Data Concept: A Review

18 | P a g e

Another study conducted by Ali Davoudian et.al. & Abdul Haseb et.al;

presented classification of NoSQL Database and comparison of different

database available in market table 2-3.

Table2-3: Different NoSQL database
 Low: Less possibility of alteration Medium: Moderate possibility of alteration High: Great possibility of alteration

Source: Singh et.al. (2019): Future Prospects and Challenges in Geospatial Database for Handling of Big Data Concept:

A Review

Microblogging is a crucial part of everyone’s life. Various studies have

shown that such practices are rich source of timely data for valuable information

[Sun et. al. (2017)]. Smith et al; has stated that 88% of US adults use internet,

77 % owns smart phone and 69 use social media. 30 % of this tagged location in

their post [Zhang et.al. (2014)]. Geo-tag information over microblogging sites

is Volunteered Geographic Information (VGI), which is pervasive in nature,

and make each citizen a sensor. Cugler et. al. paper has also mentioned the role

of VGI in increasing velocity of geospatial data. These improved service models

provide broad geospatial information to upkeep social popularization (Ye 2008;

Luo et al., 2009).

Geographical data is consolidated in hierarchical data object by spatial

database. ArcGIS is one of the most important solution provider to process

geospatial data. White papers of ERSI has stated working principals of

ArcGIS’s geodatabase. “Working with the geodatabase: Powerful multiuser

Parameter Data

Models

Scalability Data

Size

Data

Complexity

Communication

Protocol

Neo 4j Graph Low Low High SSL

Dynamo Key Value High High Low HTTP

CouchDB Document Medium Medium Medium SSL

MongoDB Document Medium Medium Medium SSL

Bigtable Column High High Low

Hbase Column High High Low SSH

Casandra Column High High Low SSL

MariaDB Column High High High SSL

MonetDB Column High High Medium SSL

C-Store Column Medium High Low SSL

19 | P a g e

editing and sophisticated data integrity” in 2012 demonstrate the structure,

working and various feature of geodatabase [Geodatabase (2012)]. Another

paper “Understanding Coordinate management in geodatabase” in 2007

illuminated the multi dimensionality of geodatabase that is in 2, 3 or 4

dimension. This paper also exemplifies the importance of m dimension.

Both SQL and NoSQL based database management systems has

provided solution for geospatial data. MySQL and Postgre-SQL has

incorporated OGC’s SFS and SFSQL to provide the functionality of spatial

analysis, but face the problem with scalability of the current data. In S. Schade,

(ISPRSarchives, 2015) paper optimal treatment of the big data to handle

geospatial data was introduced. In order to investigate the big data of

geospatial nature presented over distribute geography a different approach

needs to be reformed. To deal with the large scale of unstructured data column

based NoSQL database such as Neo4j, RIAK, Hbase, MapReduce and

Cassandra can be used [Medina et.al. (2012)]. V .Kantere et al paper stated that

in case of decentralized spatial information, a peer to peer paradigm can be

beneficial [Tobler (1970)]. To achieve fast retrieval of information through

query processing Online analytical processing is used. Usually OLAP

operations work on relational (ROLAP) or multidimensional (MOLAP) data

architectures (P.F.R. Silva et. al). Another paper by Max Cheualier .et .al, acme

the preface of horizontal scaling in standard OLAP based Data warehouse

[Zhang et. al (2014)].

To process spatial big data the best frame work presented is over

distributed file systems like Google file [Giuliani et.al. (2014)] system and

HDFS [Borthakur et.al. (2007)] which further utilize map-reduce [Dean et.al

(2008)]. MongoDB and HBase has provider analyst with advancement of

Column-oriented database systems which support OLAP or join processing.

Zhange et.al. paper stated that Apache Hadoop is a framework that facilates

parallelization, remote execution, data distribution, load balancing, or fault

tolerance while working with SBD [Zhange et.al. (2014)]. Other than Apache

Hadoop; Pregel [Zhang (2014)], GraphLab [Nguyen et.al (2017)], Power-Graph

20 | P a g e

[Zhang et.al.(2014)], HaLoop [Bu et.al. (2010)], PrIter [Geodatabase (2012)],

and CIEL [Nguyen et.al (2017)] also provide solution for processing SBD. Lee

et.al.; paper stated how Complex event processing (Oracle CEP and Esper) and

Spatial-OLAP (JMap and GeoMondrian)can be used to manipulate SBD.

Major CEP engine doesn’t provide parallel processing but Interstage Big Data

CEP Server by FUJITSU [Liu et.al. (2016)].

2.2 LITERATURE SURVEY ON LIMITAION OF EXISTING SYSTEMS

FOR SPATIAL DATA HANDLING

Veda C. Storey et.al. Paper has highlighted some of the shortcoming of tradition database

systems while working with such data [Storey et. al. (2017)]. These drawback are 1) single

point of failure, 2) expensive with respect to amount of data, 3) impedance mismatching

(aggregated verses atomic value [Sun et. al. (2017)], and 4) distributed processing (high

complexity new node to data balance [Corbellini et.al. (2017)] and performance decrease as

join and transaction is difficult in distributed environment).

In Grace Park et.al; paper, it states that considering the volume of the data, big data

analysis may also fail due to the following error / reasons [Zhang et. al (2014)]: 1) lack of data

content, 2) Inaccurate Metadata and 3) batch oriented system and their issues with real time

data processing.

With increasing number of analysis proceeding at same time a new problem came into

existence i.e. the problem of high concurrent access (Yang and Huang, 2013).

Cugler et. al. paper stated that MapReducd framework faces problem while working with

multiple iterations.

2.3 SPATIAL SEARCH MECHANISM

The R-tree data-structure is used in majority of the search algorithm working with spatial

Data. With the rising demand of the spatial data analysis a naive need aroused for the optimal

search mechanism. Various researches has presented different search algorithm for spatial data

depending on the application. Different search algorithm such as “Reverse spatial and textual

K nearest neighborhood (RSTkNN) Algorithm” using intersection union R-Tree (IUR-tree),

Clustering with Local Search CLS algorithm, Reverse Farthest neighbor (RFN) query search

21 | P a g e

algorithm using NVD, and x-hop algorithm using social network aware IR-tree (SNIR-tree)

for processing social aware top-k spatial keyword (SkSK) query. Most of these algorithms are

loosely couples with the database and facing the problem of Euclidean distance

2.3.1 SPATIAL KEYWORD SEARCH

Spatial dimension of web, have presented researcher with wide variate of geo-

location object with rich attribute description. Different POI (point of interest)

available for processing are geo-coded and geo-positioned in nature hence

require efficient textual and spatial indexing. In order to retrieve spatial relevant

POI, spatial keyword queries are fired over real-life application such as Google

Maps, Foursquare, Twitter etc. In order to retrieve most appropriate spatial

object for a user, spatial query is processed on the dataset. These query return

object that matched the location, keyword or both keyword and location. Based

on the two deriving factors i.e. location or keywords different ranking relevance

factor is calculated. Hence the conventional spatial query must return spatial

object that are nearest to the query location but must be textual revenant too.

Among the various spatial keyword query proposed by the research community;

these three are widely popular i.e. Boolean K query, the top-k query, and the

Boolean range query (table 2-4).

Table 2-4: Different type of spatial search queries.

Boolean K query Return k object that are nearest to query location

and have the same keyword in the description as

mentioned in the query.

Top K query Return k objects nearest to the query location based

on the ranking score. This ranking score is combine

score of spatial and textual relevance. And the

return order is in ascending order of ranking score.

Boolean Range
Query

Return all object who have same keyword in the text

description as mentioned by the query within 10km

buffer range of the query location.

Among the three mentioned queries Top K spatial keyword query is

commercially proven and most of the researcher deploy the same. A top-k spatial

keyword query return top k spatial object, ranked on the basis on both minimal

distance from query location and relevance of object keyword with the query

22 | P a g e

keyword. Top K spatial query return the matched object based on the values of

k, i.e. the query will return the object with exact keyword match if the value of k

is 1, if the value of k is 2 then the query will return object with better textual

relevance.

 2.3.2 SPATIAL INDEXER

 Index is a reference pointer which help in fast accessing the record from any

storage platform. In order to avoid sequential scan of every record, spatial index

are generated using minimum bounded rectangle for efficient search. Hence

spatial index is a data structure used to store the optimal reference of spatial

object in time bound application and while working with spatial big data. For

efficient working of range query, spatial join and K-Nearest neighbor, optimal

spatial index is a must. Riguax et al. (2002) categorization divided spatial indexes

into space driven structure and data driven structure. Mapping after partition

approach is followed up in space driven structure. B+-tree extension can be

mapped with such indexes hence produce indexes which are memory space and

time efficient. Latter index that is data driven structures are designed on spatial

containment relationship and are part R-tree family.

Some of the commonly used spatial indexes are fixed grid index, quad-tree , kd-

tree, Geohash and r-tree. Among these the first four are space driven spatial

indexes and the last one is data driven spatial index. As the name suggest in fixed

grid index a predefined grid of fixed dimension m x m is designed with each cell

is intersection or overlap of spatial objects. Multilevel grid hierarchy is used to

avoid redundancy with each cell following space-filling curves. Quad- tree is

widely used spatial indexing techniques in which each node is divided into four

nodes and partition of the area continue until and unless the most suitable MBR

is identified. Now in KD-tree axial split of the study area is executed depending

of the value of the coordinates. A Geohash is a binary string each bit represent

alternative division of UTM zones. The length of Geohash could range from 1

to 12. A longer Geohash has a finer precision. The second family of spatial

indexes that is R-tree, form heuristic optimization of MBR to formulate spatial

23 | P a g e

index that follows hierarchical order. Various version of R-tree are used globally

designed to carter specific spatial problem.

 2.3.3 LITERATURE SURVEY ON DIFFERENT SEARCH MECHANISM

Spatial search required to search attribute and location separately [Costes et.

al (2019)] [Georgiou et. al (2019)] [Zheng et. al (2016)]. Presenting the

perspective search of the information, indexes are generated both keyword

index and spatial index. Based on the core design techniques, the spatial indexes

can be presented as R-tree based [Zhang et. al (2016)] [Zheng et. al (2016)],

Grid Base [Griffith et. al (2016)] [Giannotti et. al (2007)], and spatial filling

curve based [Hong et. al (2017)] [Griffith et. al (2016)] [Zhang et. al (2016)] .

Among these three, the R-tree based index presents much more efficient and

moldable results, hence current paper presents the literature supporting R-tree

and its applications to cater spatial search. Conventionally to engender keyword

search index, inverted index or hash table are used to index keywords of large

dataset [Zheng et. al (2016)]. For spatial indices include inverted R-tree [Zhou

et. al (2005)] , SFC-QUAD [Christoforaki et. al (2011)], S2I [Zhang et. al

(2013)] , IR2-tree [Felipe et. al (2008)] , KR∗-tree [Zhou et. al (2005)] , IR-tree

[Wu et. al (2011)] [Cong et. al (2009)] , WIBR-tree [Wu et. al (2011)] , and SKI

[Cary et. al.(2010)] . [Zhou et. al (2005)] paper, generate keyword-object list

and create R-tree for each keyword in search to form IR-tree. With the arrival

of the query only the R-tree supporting all the keywords are addressed for which

incremented nearest neighborhood technique is used [Griffith et. al (2016)].

[Christoforaki et. al (2011)] paper, fused mathematical tool such as space filling

curve with a keyword file generated using the inverted indexes. To reduce

processing time, keywords were blocked together and the parent index of the

block is searched in the S2I [Rocha et. al (2011)]. Spatial similarly to S2I tree,

IR2-tree incorporated unique reference file with each leaf node of R-tree [Felipe

et. al (2008)]. Li et al. proposed BR-tree [Griffith et. al (2016)], where R-tree

location of the objects and B-Tree organize keywords. The algorithm followed

two approaches that is keyword search first or location search first. [Griffith et.

al (2016)] [Zheng et. al (2016)], paper combine both IR-tree and IR2-tree to

formulate IL- Quadtree. In IL- Quadtree, for each keyword linear quad trees is

24 | P a g e

generated using Morton code and different bits are used to present the status of

quadrant [Griffith et. al (2016)].

For searching for confined area the KR∗-tree was proposed by [Hariharan et.

al (2007)], IR2-tree is the other variant of IR-tree proposed by Cong et al. [Li

et. al (2012)] [Li et. al (2011)] [Cong et. al (2009)]. A Similar IRLi-tree store

Integrated Inverted file at the nodes. Other remarkable research combining R-

tree with inverted index are DIR-tree, CDIR-tree, introduced by Cong et al. and

SKI proposed by [Cong et. al (2009)]. For supporting multi query search,

WIBR-tree was proposed by [Wu et. al (2011)]. With every tree structure

proposed the specified query was solved but effect the MBR and result in

change in processing time.

Top K spatial keyword search query which follow scoring function or kNN (k

nearest neighborhood) to find the relevant results formulate the base for various

model to find stationary and non-stationery (in-motion) objects. Various spatial

search queries are designed for stationary object [Zheng et. al (2016)]

[Christoforaki et. al (2011)] [Felipe et. al (2008)], where one find the probability

of having an object at particular location depending upon the list of keywords

given as stated above. For mobile objects, a location-aware top-k text retrieval

(LkT) [Cong et. al (2009)] query was proposed by Cong et al. paper; along with

query engine for bi directional motion in as MkSK query and RSTkNN query

[Lu et. al (2011)] . These query engine use language models and a probabilistic

ranking function to find the best fit for the location aware query. Another study

carried out by Chen et al. presented Boolean range continuous query and

proposed IQ-tree to support logically related keywords. [Zheng et. al (2016)]

proposed I3 Integrated Inverted Index to support logical join among the search

query. Different researcher presented Top K with different input criteria’s such

as sliding window [Griffith et. al (2016)] , distributed database [Zhang et. al

(2016)] and adjusting weights of the scoring function dynamically [Hong et. al

(2017)].

[Cao et. al (2010)] paper propose a model that find out result based on the

priority of the keyword used in location-aware top-k prestige-based text

25 | P a g e

retrieval (LkPT) query. Literature presented by Cho. X et al. supports extracting

block of output object, m closest keywords (mCK) query and collective spatial

keyword querying (CSKQ) [Cao et al (2011)] return all object holding minimum

distance from the object suggested by the keywords and minimum distance

between the output objects.

Different research carried out by [Alvares et. al (2007)] [Yan et. al (2011)]

presented work to capture semantic search pattern of the path travelled. All of

these research also used the top k spatial keyword search query with sematic

engine. Literature suggest that Top K spatial keyword search query can be used

for various other perspectives such as navigation [Rocha et. al (2011)], location

based type search [Wu et. al (2011)], and rigorously ranking of an event, based

on location and region of occurrence [Zheng et. al (2016)]. Conclusive from the

related work, Top K spatial keyword search query is most optimal technique to

deal with rapidly generated spatial data over various platform; prominently social

media.

2.4 INFERENCE

From the various literature studied in the field of the spatial database, conventional

systems designed for catering spatial big data and spatial search mechanism, it can be

concluded that spatial big data has huge potential for research. One can generate advance

architectural infrastructure with evolving technologies in the field of SBD. The literature

identified in this research easily support the objectives of the proposed model.

26 | P a g e

CHAPTER 3

 BASE ALGORITHMS FOR CBDFI MODEL

The proposed model is tested on an airplane dataset, provided by the aviation department

of the USA. The dataset is provided by Federal Aviation Administration FAA report on the

forecasting of airplane activity are various different airports under its jurisdiction. The dataset

provide detail about the aircraft, there travel history, and there monthly delay status and cause.

This dataset provide information regarding capacity of aircraft, duration of travel with source-

destination station, staff information, passenger information with luggage report, passenger

reviews and aircraft maintenance report etc. The organization planned to prepare airplane

planning forecast based on the pervious years forecast called as base year and present for

upcoming year in general the consider last decade report to forecast for upcoming 15 years.

There are various different resources from which this dataset can be acquired such as

www.apa.data.faa.gov, www.webcentral.bts.gov/oai/sources, and www.faaa.gov/arp/pdf/

v3a.pdf etc. The current studied intend to find out various different location where a particular

aircraft encounter delay due to same reason of faulty machinery. The model will be trained to

identify the location of the nearby aircraft form the same group of airplane and the Docker

station of the aircraft in repair. This dataset is freely available in text (tab delimited) format

for research purpose and provide year wise finding of 2500 flights departed from New York

and Washington DC to South America, Africa, Europe, United Kingdom and India.

3.1 DATA CLEANING TECHNIQUES

Data capture for the current research has to undergo series of process to ensure the

performance of the search algorithm. The pre-processing of the dataset include 3 main steps of

identification of error, detection of error and correction of errors [Ridzun et.al, 2019]. The

basic characteristic of SBD is hetro-types data hence in the process of data cleaning remove

error data, ensure consistence of data and transform the data into standard format [Ridzun et.al,

2019-7]. In the current research the data cleaning of the aviation data is carried out in the

following steps:

Step1: Transforming tab delimited into schema full dataset. While transforming the data

it is ensured that every column generated should have the proper heading hence if the heading

http://www.apa.data.faa.gov/
http://www.webcentral.bts.gov/oai/sources
http://www.faaa.gov/arp/pdf/%20v3a.pdf
http://www.faaa.gov/arp/pdf/%20v3a.pdf

27 | P a g e

is missing the appropriate header is allocated to the dataset. And secondly the location provided

by the FAA is in meters i.e. projected projection system. This location need to be converted

into sexagesimal format hence the purpose model take sexagesimal location format as input.

Step2: Data inspection is carried out to identify errors and inconsistency in the

transformed dataset. Two different approaches are carried out in the current research to identify

anomalies. To identify the error in delay related data set; data profiling is carried out and to

identify the anomalies is heuristic study of aircraft prediction concepts of data marts will be

performed.

Step3: In this step the transformation or the error-some data will be carried out and

replace in the dataset to ensure the performance of the proposed model.

Ideally there are four type of data cleaning techniques followed for SBD, these model

are Cleanix [Wang, et al. (2014)], SCARE [Yakout, et al. (2013)], KATARA [Chu et.al (2015)]

and BigDansing [Khayyat, et al. (2015)]. Among the four different model the proposed model

use KATARA technique as this data cleaning technique perform sematic table interpretation,

this tool provide an mean to generate possible correct and wrong data and most importantly it

run of the functionality of top-k result similar to the approach this proposed model present.

The detail working of the process is explained in chapter 6.

3.2 INDEXING ALGORITHM FOR SPATIAL BIG DATA

Spatial data are nominal attribute data, accompanied by logical layered view over it.

Indexing of the data set in fetching query plays a very important role in calculating the execution

time of query. Various research have been conducted to produce most efficient indexing as per

the application. In CBDFI model, a hybrid indexing techniques is used with combine inverted

index, hash table and quad tree together to produce fast and new index for spatial search.

3.2.1 INVERTED INDEX

Different words, keyword and joining phrases form any documents but if a

data structure can invert this document in such a way that all the relevant

keywords and their respective occurrence can be recorded then such data

structure is called “inverted index”. An inverted index consists of a list of all

28 | P a g e

unique words that appear in any document, for each word, a mapping is done

from content, such as words or numbers, to its locations in a database file, or in

a document or a set of documents which contain that particular word appears.

The sole purpose of inverted index is to allow fast full text searches, at a cost of

increased processing when a document is added to the database. It is the most

popular data structure used for document retrieval systems, which are used on a

large scale for example in search engines. Dictionary and Posting are the two

important part in any indexing system. Dictionary is vocabulary, lexicon of the

various different term used in the document and posting is the position of that

lexicon in the document. This same approach will be followed when indexing

the hs code too. The all the similar hs code with be part of the dictionary and their

position with the number of time that hs code are repeated in the given keyword.

During the search call the system will first check the keyword in the dictionary

and from their it will be pointed toward the parent document and it position in

that document. Similarly when a location will be searched the system is check the

hs code in the dictionary and then they will be pointed to the various nodes of the

location quad tree where that keyword could be mapped. Depending upon the

occurrence pattern that need to be followed in the search, two different type of

frequency are generated i.e. term frequency and the document frequency. Term

frequency refer to the number of term occurrences in a single document and

document frequency is the number of documents in where the occurrence of

term is registered.

In the process of Inverted index construction the following steps are

undertaken: 1) Collection of the document to be index, 2) perform tokenization

of the keyword to be stored in the dictionary, 3) pre-process in the token and

last step is 4) For each term index the documents in which the term appears.

 Tokenization
Let‘s assume that there is a collection of documents one wants to index.

Tokenization is the process of separating pieces of a text – the tokens from

each document, usually by white-space or other delimiter while omitting

punctuation. While working with the hs code the following step of

29 | P a g e

tokenization is not required because the hs code are token by itself.

 Stop words
Stop words are extremely common words that appear in the collection but

play minor role in the search. For instance the, which is the most common

word in English text, but only rarely helps to retrieve the relevant set of

documents for the user. Removing stop words from indexing process helps

to reduce the size of the final index.

 Normalization
“Token normalization is the process of canonicalizing tokens so that

matches occur despite superficial differences in the character sequences

of the tokens.”. There are two different way to normalize the tokens either

by creating equivalence classes or by relating tokens by some relation.

 Stemming
Stemming is a process of transforming words to its morphological root

(stem). For example, words retrieve, retrieves and retrieval would be

normally indexed as separated terms, but user can be interested in all of

words from the set. Thus, the words are stemmed to a common form.

The inverted index yield by the CBDFI model is as following:

Keyword1  doc1.name(occurrences no.)  doc2.name(occurrences

no.) Keyword2  doc1.name(occurrences no.)  doc2.name(occurrences

no.) And so on

3.2.2 HASHING

Hashing is known to be a specific case of Indexing. Basically Indexing is

used to partition the dataset based on a value of a field or a combination of fields.

As well as it can also partition the data set based on a value of a function, called

hash function, computed from the data in a field or a combination of fields. In this

specific case, indexing is called data hashing. For a huge database, it is almost

next to impossible to search on all the index values and through all its level and

then reach the destination data block to retrieve the desired data. Therefore

hashing is an effective technique to calculate the direct location of a data record

30 | P a g e

on the disk without using index structure. For hashing the words in the file is

encoded into compressed into fixed length values of a hash key. Hence the number

of words to be scanned is reduced into smaller number and fast retrieval is

achieved. The primary components of hashing are hash table, hash function,

collision and collision resolution. The hash table can be storage in memory or on

disk. Keyword and size of hash table plays a very important role in the efficient

run of hash table. The values stored in the hash table can be a string or an integer.

As integer are easy to be used as reference hence preconditioning is applies on the

string where the string is converted into ASCII value. A similar process of

preconditioning was carried out while calculating the average weight of the

location number. With the help of hash function the key is transformed into a

number which is stored in the hash table. This number is further used as an index

to position the desired location of the searched word. Hashing provide fast

insertion but for searching a moderation need to be maintained between the

function and number of keys in hash table. While storing the keys sometime two

keys get allocated for the same location and hence this condition is called as

collision and process of finding alternative location is called Collison removal. A

collision resolution strategy guarantee future key lookup operations that from

know the query returns to the correct respective records and the problem of

finding the same record on one location is solved.

Hash function is a function which is applied on a key by which it produces

an integer, which can be used as an address of hash table. Hence one can use the

same hash function for accessing the data from the hash table. In this the integer

returned by the hash function is called hash key. There are various types of hash

function which are used to place the data in a hash table such as division method,

mid square method and digit folding method. In the division method the

remainder decide the index of the record value and the dividend is the size of the

hash table for example if the record 62,78,89,34 is to be placed in a hash table and

let us take the table size is 20. Then index of the each number will be 2 for 62, 18

for 78 9 for 89 and 14 for 34. In the second method, the square of key and then the

mid digit is considered for indexing. For example if we want to place a record of

3101 and the size of table is 1000. So 3101*3101=9616201 i.e. h (3101) = 162.

31 | P a g e

And in the third method the key is divided into separate parts and by using some

simple operations these parts are combined to produce a hash key. For example:

consider a record of 12465512 then it will be divided into parts i.e. 124, 655, 12.

After dividing the parts combine these parts by adding it. h(key)=124+655+12

=791

In order to avoid collision the following methods are considered; chaining,

linear probing, quadratic probing and double hashing. Chaining is a method in

which additional field with data i.e. chain is introduced. A chain is maintained at

the home bucket. In this when a collision occurs then a linked list is maintained for

colliding data. While in liner probing is very easy and simple method to resolve

or to handle the collision. In this collision can be solved by placing the second

record linearly down, whenever the empty place is found. In this method there is

a problem of clustering which means at some place block of a data is formed in a

hash table. If one is working with complex keywords and confined hash table then

quadratic probing is used where the hash function is defined by the

H(key)=(H(key)+x*x)%table size. Double hashing is a technique in which two

hash function are used when there is an occurrence of collision. In this method 1

hash function is simple as same as division method. But for the second hash

function there are two important rules which are

1. It must never evaluate to zero.

2. Must sure about the buckets, that they are probed.

The hash functions for this technique are:

H1(key)=key % table size

H2(key)=P-(key mod P)

Where, p is a prime number which should be taken smaller than the size of a hash

table. The hash function used in the CBDFI model is as follows:

Hash (key) = (sum of ASCII values of First, Middle and last character of the a

word) % n

32 | P a g e

Where n is a prime factor taken from p{alpha} set.

3.2.3 QUAD-TREE

A Quad-tree is among the most common data structured used for

performing spatial indexing. Quad-tree is bounded by limit for each node and in

the case of outreach of the limit the node is subdivided into child node and these

process keep on repeating until and unless the required child element is within the

desired limit. The limit for the current research quad-tree is based on the calculated

weight of the “hs code”. The first “hs code” and its respective weight is consider as

the parent node and on arrival of next “hs code” the weights and probability of

reaching that node is compared. If the weight of the “hs code” is more than the

parent node then interchanging of the nodes will take place. Any keywords ki inside

a file will be associated with the weight of the inverted file dictionary and hence

there could be only limited keyword that can be written into the file location and in

the memory. Hence the relation of keywords to the size of the file/memory decide

the limit for the tree cell. With respect to the earth surface, the whole earth is divided

into four zone i.e. east, west, north, south and they can be further divided into child

quadrants. The hybrid quad-tree will be proved advantageous as each keyword will

be associated with a “hs code” which will be cluster of 24 locations situated at

different UTM zones; therefore with every first matched keyword in the quad-tree

will optimized the search by level of 24. The presented hex code are unique for a

group of 24 distinct location and will be represented as one quad-tree node. The

number of the group member could be less than 24 under controlled condition. The

number 24 is the result of 4C4 combination, i.e. a sexagesimal location will be

having four parts for example 24o.34’46.54” which can be generalized as

Ao.B’C.D”; there are going to be 24 different combination of the ABCD which will

generate the same hs hexadecimal keyword with values of A, B, C, and D less than

60. But if the value is more than 60 then the combination values will be less than

24. This group of 24 location present us with a means to check more than one

location every time someone is investigating any “hs code”. The quad tree

representation of the “hs code” is shown in the figure 3-1 and follow a specific

design to represent the locations.

33 | P a g e

Fig3-1: hs -24 Quad tree

The left most leaf node of every child node will point out at the exact

location traversal weight to identify a particular behavior of the object in study.

Therefore the summarized location hs quad tree will present the researcher with

a data structure that can be used to search multiple keywords in the query being

addressed by the user. The second left most leaf node of each child node will

provide with the pointer to the path to the most suitable location as per the

requirement of the user. If the this node is empty then one can move to the next

child node quadrant as none of the present six location meet the requirement of

the user. Hence while traversing through these node one can easy identify the

most suitable location that can be accessed under the given circumstance.

Generation of the hybrid quad-tree for the presented research will follow the

following steps:

Algorithm 3-1: Generating Quad-tree from hs-24 Code

Step 1: Start

Step 2: Enter the Ith location value

Step 3: Generate hs code of the entered location

Step 4: Calculate the weight of the hs code generated and consider it as parent node

Step 5: Entered the next I +1th location and generate its hs code

hs -24

D

CW

3

L

23

L

24

L

22

CW

6

L

20

L

21

L

19

C

CW

3

L

17

L

18

L

16

CW

6

L

14

L

15

L

13

B

CW

3

L

11

L

12

L

10

CW

6

L

8

L

9

L

7

A

C

W

3

L

5

L

6

L

4

CW

6

L

2

L

3

L

1

34 | P a g e

Step 6: Calculate weight of the I +1th hs code

Step 7: Compare the weight of I +1th hs code with parent node

Step 8: If the weight of I +1th hs code is more than the weight of parent node then

interchange parent and child node else make I +1th hs code as child node

Step 9: If weight of the I +1th hs code is less than the other child node then child node

with the nearest match will be further divided

Step 10: Calculate the probability of traversing from child node to parent node and store

with weight of child node.

Step 11: Go back to step 4 and repeat the process.

Step 12: Stop

Hence the generated hybrid Quad-tree will suffice the purpose of the CBDFI

model in improving the search efficiency of the SBD.

3.3 CBDFI MODEL

CBDFI model is designed to improve the search efficiency of the spatial dataset.

Substantial research has been carried out in the field of SBD. Adhering to the paradigm shift

from SQL based databases to NoSQL databases hybrid architecture is produced as

conventional solutions to cater the need of SBD. The proposed research model intend to

produce a novel search algorithm designed to work with SBD in Column database. The current

model has modified the way the location is being stored and processed in any conventional

product. The introduction of the hs code will provide analysts with a new domain for research

and CBDFI model is once such positive experimentation. The proposed model follow the

following steps:

Algorithm 3-2: Design CBDFI model

Step 1: Start

Step 2: Import spatial dataset from the source

Step 3: Run the pre-processing procedure to clean and parse the unstructured data set into schema

enable format

Step 4: From the processed dataset generate the library of location and associated keywords

Step 5: Convert the location into hs codes

Step 6: Generate the hidden markov model to calculate the probability of the hs code

Step 7: Generate the hybrid quad tree from location’s hs code

Step 8: Generate the Hy-S indexer for hs code and keywords

35 | P a g e

Step 9: Populate the Pre-fetch table with most probable keywords and their respective hs codes

Step 10: Generate the Hs-I tree with calculated weights, cumulate weight of hs-24 nodes and probability

to traverse

Step 11: Input spatial query with keyword, location and k

Step 12: Calculate the spatial and textual relevance

Step 13: Run the CBDFI search algorithm

Step 14: Render the changes in the Hs-I tree

Step 15: Return the result of the spatial query with identified locations.

Step 16: Stop.

3.4 INFERENCE

This chapter presented the experimental dataset undertaken to prove the working of the

proposed research. The algorithms stated in this chapter will proved insight while designing

the methodology for the given research in the upcoming chapter 4. The working of the CBDFI

model will be explained by various different algorithms stated in chapter 6.

36 | P a g e

CHAPTER 4

METHODOLOGY OF RESEARCH

This thesis proposes a novel search algorithm to search spatial data and it utilize the

unique “hs code” representation of the location. Another major contributing is the purpose of

the indexing techniques that can be used both for the textual index as well as for the spatial

indexing

4.1 METHODOLOGY

In the presented work, True experimental research design with bottom up approach is

exploited. In order to achieve the desired objectives, agile model will be used. The current

research work will be carried out in four stages i.e. data pre-processing, Location encoding,

column database design and spatial search (figure 4-1).

In stage 1 spatial data will be collected from various sources and understand its intrinsic

nature. With the paradigm shift of structured data to unstructured data, Spatial Big Data would

be generated. This stage will provide us with various challenges and difficulties faced while

working with spatial big data. And pre-processing of the spatial data will be carried out in this

stage which will be processed for designed spatial search algorithm

In stage 2 location data will be extracted and will be encoded to generate new spatial

indexer for fast spatial search.

In stage 3 new data type will be developed [Barewar et.al. (2014)][Radhidan et.

al.(2015)] which will overcome the problems faced by spatial big data. One of the major issues

faced with spatial data is storing the spatial information in its same nature. Various other

problems such as interoperability, open standard and cross platform also poses a huge

challenge for developers. Hence a new data type will be introduced and incorporated in NoSQL

database

In the last stage different existing spatial query algorithm will be studied and understand.

Among the available the selected algorithm will be incorporated with NoSql database. Along

with it various spatial analyses will be conducted to study the performance speed of data sample

37 | P a g e

stored in new data type and will list down the different problem faced. The process flow of the

research is illustrated underneath.

Fig4-1: Methodology design diagram

The Methodology followed for the current work is as follows:

1. Comparison of Spatial Architecture and spatial search algorithm.

2. Analysis existing data type for storing spatial data and devising new user defined data

type.

3. Study the architecture of Document based NoSQL database

4. Design a logical structure of spatial architecture following BASE theorem with

incorporated spatial datatype (SDT)

5. Study of different dependent parameters of spatial search algorithm and design novel

Study Complexity

Spatial Search

Design Spatial data search algorithm

NoSQL Architecture

Column Database

Creating of New Spatial Datatype

Spatial Indexer

Location encoding

Location Encoding

Cleaning of dataset

Pre-processing

Extraction Spatial Big Data

38 | P a g e

search algorithm.

6. Compare and optimize the performance of search algorithm.

Table 4-1 Methodology and outcome mapping

S. No Steps Desired Output Challenges Outcome

1 Comparison of Spatial

Architecture and spatial

search algorithm

Working with

Spatial Big Data

Multitude of Spatial

Data format, and

working with

Euclidean distance

Compare the

existing search

algorithm

2 Analysis existing data

type for storing spatial

data and devising new

user defined data type

.

New basic Spatial

datatype with

implicit behavior

Storing hierarchy and

working with

Euclidean distance

Develop spatial

data type

3 Study the architecture

of column oriented

NoSQL database

Advantage of

Base theorem

Meeting the demand

of the current analysis

with column based

database

Design column

based spatial

database

architecture.

4 Design a logical

structure of spatial

architecture following

BASE theorem with

incorporated spatial

datatype (SDT)

Optimal

searching of

Spatial Data in

proposed

database

architecture

Sustaining the

intrinsic characteristic

of spatial data i.e.

hierarchy, actual

shape and relationship

Design Logic

based deductive

spatial database

architecture.

5 Study of different

dependent parameters

of spatial search

algorithm and design

novel search algorithm

.

Parameters that

can alter the

efficiency of

search algorithm

Incorporating the

proposed algorithm

as intrinsic property

of the spatial database

architecture

Implement the

novel algorithm

6 Compare and optimize

the performance of

search algorithm

Processing speed

of search

algorithm

Improving the

efficiency and

reducing operational

trade-off

Test efficiency

of algorithm with

existing search

algorithm

39 | P a g e

4.2 CBDFI FRAMEWORK

Spatial data are nominal attribute data, accompanied by logical layered view over it. This

logical view is responsible for the latitude/longitude of the data along with their intrinsic

relational behavior. All the object exist in the reality have strong sense of dependency among

each other, which define the object existence. Design of the logical view of the spatial data

requires through understanding of the data along with well- defined structure, which present

with the guard condition of the logical expression. Coordinate system such as Universal

Transverse Mercator (UTM) is on such logical expression to design the logical view of any

spatial data available for analysis. Design of the over-layer view helps in the retrieving the

spatial information and perform various operations of search, insertion and updating. The

complexity of the design of the logical expression increase when the analyst processes schema-

less data. For such data, there are many ways to form logical expression, this paper present the

“Column BASE- Data Fetch and Index” (CBDFI) model for performing a fast spatial data

search. The model also used a unique location code to traverse globally to and from a certain

point in reality. This presented hexadecimal code formulate the base for searching spatial data

in CBDFI model.

The black-box view of the architecture of CBDFI model include data encoder, followed

by spatial pre-fetch and Column database. Data encoder; extract latitude, longitude from

presented structural, semi-structural & un-structural data and store then in controlled fashion

for further processing. Following which sexagesimal location is rehabilitated into hybrid ASCII

code called as Hybrid Spatial ASCII (hs code) of 12 bits. The code is converted for 0 - 90o

latitude; 0 - 60 minutes; 0 - 60 seconds 0- 180o longitude. The hs code comprises of alphabet

A-Z and decimal number 0-9. These codes present the similar characteristic of hexadecimal

code hence hs code is also called as hexadecimal spatial code. The generated hs code will be

stored in spatial pre fetch. The column database will provide storage schema for the whole

process. The proposed framework is designed to create unique indexing key which will

incorporate the hs code and attribute indexer to formulate hybrid indexer for CBDFI model.

Hybrid spatial indexer (Hy-S indexer) ; identify the unique keyword for the each

generated hs code and index these hexadecimal code with the help up of scaled up indexing

algorithm Hy-S indexer combining IR-tree and Hs I-tree (hybrid hs code index tree) which

combine linear quad tree with inverted index and hashing [Costes et. al (2019)] . At the final

40 | P a g e

stage of the “Hy-S indexer”, the keyword and the associated index will populate the leaf node

of the tree data structure. During the search call the most appropriate node and the

corresponding child nodes will be picked for understanding the correlation of the keyword with

the corresponding “hs code”.

The “hs code” can associate with any keyword based on the similarities of the “hs code”.

Ideally, there can be four different cases to define the relationship between the generated “hs

code” and keywords. These cases are as follows:

Case1: Each generated “hs code” generate unique keyword. Therefor number of keyword

and generate “hs codes” are the same,

Case 2: Multiple generate “hs codes” are associated with same keyword. Therefor better

and fast indexing,

Case 3: Multiple keywords are associated with same generated “hs code”.

Therefore creating duplicate keywords and increasing the complexity and

Case 4: Multiple keywords are associated with multiple generate “hs code”.

In the CBDFI model the multiple generated hs code are associated with single keyword, hence

reducing the conversion time of the indexes and enhance spatial search. The “Hy-S” indexer

will be following the standard topological vector model such that following relationship is

maintain (Table 4-2).

 Table4-2: Topological structure to store hs code of Hy-S indexer

Hs code Latitude Longitude

GCGCICO33 0”

ICOCOCO35 18”

So on ….

4-2. a: hs table

Index Keyword Lat/Long

Index1 Keyword1 0”/ 12”

 Keyword2 8”/18”

So on…..

41 | P a g e

4-2. b: Index table

Index Keyword Hs code Start Hs code End

Index 1 Keyword

1

GCGCICO33 ICICICO33

 Keyword

2

4-2.c: Hy-S Indexer table

The CBDFI model will convert these columns, with each column stating the latitude, or

longitude or altitude of an index and will return the generated “hs code”. The columnar

reference will generate the “Hs-I tree” and will facilitate the spatial search. The framework

of the CBDFI model (Figure4-2) will be divided into four major areas; the data encoder, hybrid

spatial query engine followed by query optimizer and finally the columnar database Monet

DB. Formation of the hybrid indexer will be deriving the whole search algorithm. The created

“hs code” will formulate a linear quad tree and will support the Top k spatial keyword search

query. After formation of the indexes, probabilistic model [Singh et. al (2019)] will be used

to ensure the conversion of the query. For each generated index all the related keywords, theirs

associated objects/entities and correlated surrounding objects will be stored. Considering the

storage schema various different NoSQL databases can be deployed.

With due understanding of the dynamics of this search mechanism, column database

serve the purpose [Costes et. al (2019)]. [Singh et. al (2019)] paper present a clear comparison

of the different columnar databases for storing spatial data in No SQL schema. [Srivastava

et. al (2012)] paper state various problems faced while integrated such data in No SQL

schema. Therefore, the results will be stored in the column database and on every query fired

by the user, engine will check the node of the tree for the suitable match and return the result

of the query.

42 | P a g e

Fig 4-2: CBDFI Block Architecture

Dataset

Sexagesimal

Convertor

File Reader

List

BAT file

Manager

MAL

Compiler

MAL

Optimizer

XQuery

Interface

SQL

Interfac

e

hs Table

Keyword

Frequency

Table

Weight

Moderator

Hy-S

Indexer

Hs-I tree

Rendering

Station

Top K Keyword Spatial Query Engine

Relevance Meter

S

E

A

R

C

H

I

N

T

E

R

F

A

C

E

43 | P a g e

4.3 INFERENCE

This chapter present the various steps undertaken to formulate the methodology of the current

research. Finding from the literature review of chapter 2 and steps formulated in chapter 3

provide the base structure for the methodology of CBDFI model. On the bases of the presented

methodology the CBDFI model will be explained in upcoming chapters.

44 | P a g e

44 | P a g e

CHAPTER 5

HS CODE- UNIQUE LOCATION DATATYPE

The representation and the storage of the location code is the major reason for complicating

the process of spatial search. Hence to produce a novel search algorithm a unique and refresh

encoder is required to register the location and store the intrinsic behavior of the location to. With

the generating of “hs code” a new mean for processing location is introduced in this research.

5.1 HS ENCODER

The CBDFI model work on “hs code” converted from the latitude and longitude

sexagesimal value. The converted “hs code” showcase a unique pair of character values, arranged

in a manner to generate unique codes for each spatial location values. Transition of each code

form a pair to another formulate the rules for searching the location values during query call. The

frequency of repetition of the each bit result in forming the guard condition for search.

Prime number and prime factors plays a very important role in enhance the processing time

of different mathematical calculation [Hadraba]. The hs convertor also rely on the prime factor

of the total keyword identified in the dataset. Keyword (hs code) generator start with conversion

of the extracted latitude and longitude into weighted ASCII code. As the latitude and longitude

follow the standard decimal numbers system, therefor the weighted ASCII code follow the same

convention. Weighted ASCII code of number are as follow

0 -99 = ASCII code of tenth place * 10 + ASCII code of unit place (5.1)

100- 180 = ASCII code of hundred place * 100 + ASCII code of tenth place * 10

+ ASCII code of unit place (5.2)

For any number = ASCII code * Weight of Hundred + ASCII code * Weight of tenth

+ ASCII code * Weight of unit. (5.3)

After converting the weighted ASCII code, formation of alphabet set (Palpha) take place

ensuring only alphabet whose ASCII code is prime number and these prime number is prime

factor of the total keywords. The whole process of generating “hs code” depend upon the division

of weighted ASCII code from each element of Palpha{} set until and unless one finds the first

45 | P a g e

45 | P a g e

prime dividend. On identification of the first prime dividend, ASCII code of the matched element

p € Palpha{} is subtracted from the weighted ASCII code to find revised weighted ASCII code.

The process keep on repeating until the remainder is less than 65. For example latitude 2o (see

Table 5-1):

Weighted ASCII code = 48*10 +50 = 530, (from 5.1,5.2,5.3)

Palpha {C,G,I,O,S,Y}.

Weighted ASCII code divided by Palpha : 530 / p € Palpha{} (5.4)

The convertor will generate the hs code for each location in degree, minute and second

format. The hs code generated will be 9 bit long for values 0-59,63 and 10 bits for 60-62, 64-90.

These 9/10 bit code will be enveloped in 12 bit format by suffixing the 3/2 bits at the MSB. The

9 bit code from 0-47 will be prefixed with Y and followed 48 -59,63 will be prefixed with I at

the 9th bit.

Table5-1: Step by step conversion of Location 2o N latitude into hs code

The 10th and 11th bit will comprises of 2 bit code to understand the position of the number

pair in the location. The normalized code will be 12 bit which will uniquely identify the value.

These 10 bit code are further converted into 8 bit code for more simplified calculation.

The algorithm demonstrate the working of hs code generator

Weighted ASCII First Prime Remainder Remainder ASCII Code

530 71 459 G

459 67 392 C

392 73 319 I

319 67 252 C

252 73 179 I

179 67 112 C

112 79 33 O

46 | P a g e

46 | P a g e

 Algorithm5-1: Generating hs code

1: for i in range(n,n+1):

2: u  i%10

3: u  dict1[u]

4: t  int(i/10)

5: t  dict1[t]*10

6: s  u+t

7: num.append(s)

8: print(num)

9: for i in range(len(num)):

10: while j<7:

11: while(num[i]>dict2[j]):

12: temp  (num[i] / dict2[j])

13: temp  round(temp)

14: if(temp - int(temp) <= 0.54):

15: temp  int(temp)

16: else:

17: temp  round(temp)'''

18: if(sympy.isprime(temp) == True or temp==1 or temp==0):

19: z  dict2[j]

20: k  chr(z)

21: num[i]-  dict2[j]

22: key  key+k

23: j  0

24: else:

25: j  j+1

26: break

27: if(num[i]<dict2[j]):

28: break

29: if(num[i]<67):

30: key +  str(num[i])

31: result.append(key)

47 | P a g e

47 | P a g e

Start

Extract “lla” value from input Generate

Weighted ASCII code

Divide weighted ASCII code with each element of Palpha {}

Is Dividend Prime

Push matched Palpha {} set ASCII value in the

32: key  ""

33: print(result)

The following process flow converting the location value into hs code is presented in Figure5-

1

 Identify Positive Region: Populate Palphs {} set

Fig 5-1: Process flow diagram hs code generation for bit(0 -9)

Subtract matched Palpha {} set ASCII value from weighted ASCII

Is Remainder < 65

Push the remainder value in the stack

Pop the hs Code from the stack

Stop

48 | P a g e

48 | P a g e

For backtracking ASCII value of the each alphabet in hs code is used. The first three bits

from the MSB are separately read and summation of ASCII values of the remaining bits (9th bit

to LSB) will give the weighted ASCII code which will be converted back to the decimal

equivalent. The 10th bit is checked for the ASCII code. If the 10th bit ASCII code is 79 or 83,

only then the value is added to summation of 9 bits (Figure 4-2). Frequency f(p) of each p €

Palpha{} presented in the hs code help in searching the exact code at improved rate. One of the

most important realization is the frequency of G, if the f(G) where G € Palpha{}is 1 the hs code

from 44-53 is encountered. Algorithm for both hs code backtracking the location is as follows:

Algorithm 5-2: Retrieving location from hs code

1: code  input()

2: j len(code)

3: for k in range(j):

4: if k < 1 :

5: sum +  dict(code[k])

6: elsif k =1:

7: num1 int(code[1])

8: else:

9: num  int(code[0])

10: num  num1*10 + num

11: sum  sum+num

The following process flow converting the location value into hs code is presented in Figure5-

2

49 | P a g e

49 | P a g e

Fig 5-2: Process flow diagram for Back tracking from hs code

Start

Extract 12 bit hs Code

Check 11th and 10th bit and match with position table

Check 9th bit && bit_9 == 0

Is ASCII value == 79 // Is

ASCII value == 83

Store 9th bit value into bit_9 variable

Initialize value of loop_bit == 8

B_sum = B_sum + loop_bit ASCII value

Loop_bit --

Is loop_bit > =

0

Print value of B_sum

Stop

50 | P a g e

50 | P a g e

These “hs code” for all the number from 0 to 90 is represented in the table 5-2. The 10 bit

code is further compressed and change to 8 bit code (table 5-3) and finally converted into a

consolidated decimal code which is reconverted into an ASCII keyword. This whole process of

converting the location into unique keyword is the heart of the proposed spatial search. The

following section will demonstrate various processes undertaken to convert consolidate location

code.

Table5-2: hs code 0-90 number

Number W_ASCII Hs code 11 10 9 8 7 6 5 4 3 2 1 0

0 528 GCGCICC45 Y G C G C I C C 4 5

1 529 GCICICC44 Y G C I C I C C 4 4

2 530 GCICICC45 Y G C I C I C C 4 5

3 531 GCICICC46 Y G C I C I C C 4 6

4 532 GCICICC47 Y G C I C I C C 4 7

5 533 ICICICC46 Y I C I C I C C 4 6

6 534 ICICICC47 Y I C I C I C C 4 7

7 535 ICICICC48 Y I C I C I C C 4 8

8 536 ICICOCC43 Y I C I C O C C 4 3

9 537 ICICOCC44 Y I C I C O C C 4 4

10 538 ICICOCC45 Y I C I C O C C 4 5

11 539 ICICOCC46 Y I C I C O C C 4 6

12 540 ICICOCC47 Y I C I C O C C 4 7

13 541 ICICOCC48 Y I C I C O C C 4 8

14 542 ICOCOCC43 Y I C O C O C C 4 3

15 543 ICOCOCC44 Y I C O C O C C 4 4

16 544 ICOCOCC45 Y I C O C O C C 4 5

17 545 ICOCOCC46 Y I C O C O C C 4 6

18 546 ICOCOCC47 Y I C O C O C C 4 7

19 547 ICOCOCC48 Y I C O C O C C 4 8

20 548 OCOCOCC43 Y O C O C O C C 4 3

21 549 OCOCOCC44 Y O C O C O C C 4 4

22 550 OCOCOCC45 Y O C O C O C C 4 5

23 551 OCOCOCC46 Y O C O C O C C 4 6

24 552 OCOCOCC47 Y O C O C O C C 4 7

25 553 OCOCOCC48 Y O C O C O C C 4 8

26 554 OCOCOCC49 Y O C O C O C C 4 9

27 555 OCOCOCC50 Y O C O C O C C 5 0

28 556 OCOCOCC51 Y O C O C O C C 5 1

29 557 OCOCOCC52 Y O C O C O C C 5 2

51 | P a g e

51 | P a g e

52 | P a g e

52 | P a g e

71 599 SGCGCGCC35 S G C G C G C C 3 5

72 600 SGCGCGCC36 S G C G C G C C 3 6

73 601 SGCGCGCC37 S G C G C G C C 3 7

74 602 SGCGCGCC38 S G C G C G C C 3 8

75 603 SGCGCGCC39 S G C G C G C C 3 9

76 604 SGCGCGCC40 S G C G C G C C 4 0

77 605 SGCGCGCC41 S G C G C G C C 4 1

78 606 SGCGCGCC42 S G C G C G C C 4 2

79 607 SGCGCICC41 S G C G C I C C 4 1

80 608 SGCGCICC42 S G C G C I C C 4 2

81 609 SGCGCICC43 S G C G C I C C 4 3

82 610 SGCGCICC44 S G C G C I C C 4 4

83 611 SGCGCICC45 S G C G C I C C 4 5

84 612 SGCICICC44 S G C I C I C C 4 4

85 613 SGCICICC45 S G C I C I C C 4 5

86 614 SGCICICC46 S G C I C I C C 4 6

87 615 SGCICICC47 S G C I C I C C 4 7

88 616 SICICICC46 S I C I C I C C 4 6

89 617 SICICICC47 S I C I C I C C 4 7

90 618 SICICICC48 S I C I C I C C 4 8

These hs code for all the number from 0 to 90 is represented in the table5-3. The 10 bit

code is further compressed and change to 8 bit code and finally converted into a consolidated

decimal code which is reconverted into an ASCII keyword

Table5-3: hs code 0-90 (8 bit)

Number W_ASCII Hs code 7 6 5 4 3 2 1 0

0 528 GCGCICC45 G C G C I Y 4 5

1 529 GCICICC44 G C I C I Y 4 4

2 530 GCICICC45 G C I C I Y 4 5

3 531 GCICICC46 G C I C I Y 4 6

4 532 GCICICC47 G C I C I Y 4 7

5 533 ICICICC46 I C I C I Y 4 6

6 534 ICICICC47 I C I C I Y 4 7

7 535 ICICICC48 I C I C I Y 4 8

8 536 ICICOCC43 I C I C O Y 4 3

9 537 ICICOCC44 I C I C O Y 4 4

10 538 ICICOCC45 I C I C O Y 4 5

11 539 ICICOCC46 I C I C O Y 4 6

53 | P a g e

53 | P a g e

54 | P a g e

54 | P a g e

55 | P a g e

55 | P a g e

From these 8 bit “hs code” further similarity and repetition of the code pair are identified.

Hence a pair of bit 7 – 2 and quad pair of 6-5-4-3 are identified and represented with hexadecimal

code. The identified codes and their respective hexadecimal code is represented in table 5-4

Table5-4: hs code pairs and their hexadecimal code

S.No Pair Hexa Code Quad pair Hexa Code

1 GY A9 CGCI A1

2 GO A8 CGCY A2

3 GS A7 CGCG A3

4 IY B9 CICI B1

5 IS B8 CICO B2

6 OY C9 COCO C1

7 OI C8 COCS C2

8 SI D9 CSCS CC

9 GOCS D1

10 GSCS E1

11 GCGY F1

Now the revised hs code after replacing the pairs with hexa-pairs is shown in table 6.

Another conversion is taken care in the form number 48-59 and 63 where the pair in bit 1 and 0 is

converted into number by subtracting decimal value of bit o from 67 and the remainder two bit

decimal number is stored in bit 1 and 0. The algorithm for encoding 12 bits hs code in 6 bits

hexadecimal code is as follows:

Algorithm5-3: Encoding 12 bit hs code into 6 bit code

1: h input(“enter hs code”,)

2: t  h[-9:-8]

3: m  h[-8:-4]

4: d  h[-1:-0]

5: nh  m+t+ char(d)

6: p1  nh[7:6]

56 | P a g e

56 | P a g e

57 | P a g e

57 | P a g e

58 | P a g e

58 | P a g e

59 | P a g e

59 | P a g e

60 | P a g e

60 | P a g e

61 | P a g e

61 | P a g e

62 | P a g e

62 | P a g e

63 | P a g e

63 | P a g e

64 | P a g e

64 | P a g e

manipulation rate of the spatial data. Traversing through these node one can easy identify the

most suitable location that can be accessed under the given circumstance. After applying the

indexer on to the location hs code one will be able to produce the location indexed quad tree where

only those node which are registered by the system under the predefined conditions will be

available in the data structure and whose reference will be present in the pre-fetch. Hence on every

query fired the system will check for the pre-fetch quad tree and will identified the required

location meet the query keywords. And because multiple different hs keyword will be present

under as given cluster hence there will be no need to traverse through the whole location but only

the location mentioned in that indexed keyword and their associated location.

5.2 HIDDEN MARKOV MODEL FOR THE HS CODE

The generated hs codes are group of four 12 bits number for each latitude and longitude

location. These codes can be further simplified to produce single 7 bit cumulative code of the

given location. During the process of encoding the hs code into 7 bit hexadecimal code various

different observation and hidden states are produces which thrives the probabilistic model of the

generated location code.

The converted hexadecimal code for each segment of the sexigeminal code will be

converted followed by hexadecimal athematic to produce cumulative location hexadecimal code.

List of p1, p2 and p3 will produce various state of the hs code. Combination of these state and their

transaction is one such evaluation problem that can be solved using Hidden Markova model

(hmm).

A though deduction of the above created hs codes, outline the following outcomes such as:

firstly the number of observations are 90; secondly there are 17 state pair whose combination will

produce an observation and thirdly the produced hidden markov model will work with 19 hidden

state. The sequence of the state will produce the unique hs code and its maximum probability to

have a particular observation will be calculated by hmm. Alike any markov model, markov

assumption is also applicable in this presented model i.e. for the prediction of future state only the

present state matter, there is no correlation of past state with future state. Figure 5-4 present state

transition probability of 6 original states forming the hs code.

65 | P a g e

65 | P a g e

.4 Y

.4

.5

.4

.5

G

.5
.9

.47
C

.6

.4

.93

.38

S

.07
.44

Y

66 | P a g e

66 | P a g e

.47
.58

C

S

67 | P a g e

67 | P a g e

Fig5-4: State transition chat of different state in 8 bits hs code

.4
C

.49

G

.0

.5

.78

68 | P a g e

68 | P a g e

Pair of these states will formulate the 17 unique state of markov model hs codes which can

be defined as follows :

S = s1,s2,s3,……sN {where S Є U (Universal Set) where N = 17}

T = t11, t12, t13, …………. tN1,……….tNM {where T Є transition probability matrix,

where each tij represent the probability of state i to transit to state j.

Π = π1, π2, ………..πN Π Є to an initial probability distribution over the state, πi ,

N = 17

This markov chain will further designed HMM λ= (T, €,π) for hs codes and will be defined

as following:

T = t11, t12, t13, …………. tN1,… tNM

A transition probability matrix T, where each tij represent the probability of state i to transit

to state j. Summation of each row and column of the transition matrix should be 1; N=M = 17

€ = €i(ϕt) Emission probability of observation being generated at state i

Φ = ϕ1, ϕ2 ………ϕT Set of T observation from the set of possible observation at

a state

S = s1,s2,s3,……sN a set on N state; here N = 17

Π = π1, π2, ………..πN an initial probability distribution over the state, πi is the

probability that the markov chain will start at state i and if πj = 0 then state j can be never

be initial state; here N = 17

This defined HMM λ= (T, €,π) will be formulating the mathematical base for the derivation

of the hs code and finally the Hy–S indexer.

5.3 INFERENCE

This chapter present the novel location code called as “hs code”. The chapter explain the creation,

traversal and mathematical model for the hs encoder. This unique location code will become the

base for the working of CBDFI search algorithm.

69 | P a g e

69 | P a g e

CHAPTER 6

CBDFI-SPATIAL SEARCH ALGORITHM

To search spatial data using CBDFI search algorithm, an efficient indexer is required.

This indexer should be able to produce fast result keeping a desirable trade off with the operation

cost and speed and load on system and skew time. The encoding of the sexagesimal location into

hs code and future into hexadecimal code will help in storing the location in consolidate and

easily retractable format. But for the efficient search on the location and the associated keywords

a hybrid indexer need to be get generated. In any spatial query related search engine two different

indexer are used for extracting textual keyword and for location. The variant of inverted index

used in multiple reference work for searching keyword in the spatial query and concept of

minimum bounded rectangle is used for spatial indexing using quad-tree, kd-tree or r-tree. In

order to improve efficiency of the search the order of calling the indexer is decider i.e. if location

indexer first or textual indexer first and their variant presents different result under different

condition. The proposed model will used a similar indexing technique for both textual and “hs

code” and will generate the quad tree represent both the keyword and location relevance to search

spatially.

6.1 HYBRID HY-S INDEXER

Both the inverted index and hash table are the two most used among the various different

indexer used to process textual data. The inverted index yield better result while working you

large dataset whereas the hash table need to be moderation with increasing data size. But if the

size of the hash table can be identified before the formation of the hash function the result yield

better performance with any of the conventional indexer. Therefore in this CBDFI model a hybrid

indexer is generated with utilized the benefit of both the inverted index and hash table i.e. a

combine indexer is generated which used both hash table first and then inverted index to fill the

keyword in it dictionary.

The hybrid indexer of CBDFI model will yield the following result

70 | P a g e

70 | P a g e

Index number 1

Keyword1  doc1.name(occurrences no.)  doc2.name(occurrences no.)

Keyword2  doc1.name(occurrences no.)  doc2.name(occurrences no.)

And so on

Index number 2

Keyword m  doc1.name(occurrences no.)  doc2.name(occurrences no.)

Keyword m+1  doc1.name(occurrences no.)  doc2.name(occurrences

no.) And so on

.

.

Index number (key-1)

Keyword n  doc1.name(occurrences no.)  doc2.name(occurrences no.)

Keyword n+1  doc1.name(occurrences no.)  doc2.name(occurrences

no.) And so on.

Hence the textual keyword as well as hs code will be indexed in the same fashion and

thereafter will get converted into quad-tree. The pseudocode for both the inverted index and

hashing is as follows

Algorithm 6-1 hybrid Inverted Index

1. Begin

2. Declare a macros MAX 500.

3. Define a structure INDEXING.

4. In struct indexing, declare character arrays NAME, FNAME1, FNAME2; two integers OCC1

and OCC2.

5. Declare main.

6. Declare a struct indexing pointer INDEXX to store later on, all the keywords in NAME, their

occurrence and count in FNAME1(OCC1) and FNAME2(OCC2) as per documents.

71 | P a g e

71 | P a g e

7. Dynamically assign memory to INDEXX, index malloc(100000*sizeof(struct

indexing)).

8. Initialize 3 file pointers fp1, fp2 and fp3.

9. Declare two character pointers fileText1 and fileText2 to store files as strings.

10. Dynamically assign memory to both character pointers, fileText1 and fileText2

malloc(100000*sizeof(char)).

11. Initialize different integer variables (i, j, k, n, m, count, c11, c2, p) 0.

12. Initialize delimiter delim “ “ .

13. Declare two character double pointers word and word2 to store the words from the

strings.

14. Dynamically assign memory to both character double pointers, word and word2

malloc(70000*sizeof(char)).

15. Declare a character pointer STOPWORDS with limit MAX and initialize all the stopwords(e.g.

a, an, he, she etc.) to it that needs to be removed without punctuations.

16. FP1fopen(path to 1st file, read mode).

17. FP2fopen(path to 2nd file, read mode).

18. FP1fopen(path to new file in which keyword and their count would be saved, write

mode).

19. If FP1 OR FP2 equals NULL

a. Print “cannot open file” message.

b. exit(0) to end the code immediately.

20. End if.

21. While FP1 doesn’t reaches end of file; (!feof(fp1))

a. fileText1[i]fgetc(fp1) i.e. get each character from fp1 and write it to

fileText1.

b. Increment i.

22. End while.

23. I0.

24. Repeat steps 21 to 23 for FP2 and fileText2[i].

25. word[i] strtok(fileText1, delim) to tokenize 1st word from the string on delimiter basis.

26. While word[i] doesn’t reaches NULL

a. Increment i.

b. word[i] strtok(NULL, delim) Syntax for strtok function.

27. End while.

28. I0.

29. Repeat steps 25 to 28 for word2[i] and fileText2 with same delimiter.

72 | P a g e

72 | P a g e

30. While word[i] doesn’t reaches NULL.

a. For loop j 0 to length of word[i]

i. Word[i][j] tolower(Word[i][j]) converting each letter to lower case.

ii. While word[i][j] i.e. the letter doesn’t belong to (a to z) or (0 to 9) or

NULL.

i. If word is ‘\n’ i.e. an Enter or change of line, replace it with ‘\0’

i.e. NULL.

ii. For loop k j to length of word[i]

a. word[i][k] word[i][k+1] i.e. replace it with next

character and so on to remove that punctuator from

whole word.

iii. End for loop.

iii. Word[i][k] ‘\0’ to End while.

b. End for loop.

c. While stopwords[n] doesn’t reaches NULL.

i. If strcmp(word[i],stopwords[n]) i.e. word is equal to any of the

stopwords.

i. Increment the count.

ii. Break the while loop.

ii. End if.

iii. Increment n.

d. End while.

e. If count equals 0 i.e. the word[i] is a keyword.

i. If c11 is not equal to 0.

i. P 0.

ii. While p is less than c11.

a. If word[i] equals any of the previous index[p].name i.e. to

count number of occurences.

i. Increment index[p].occ1.

ii. Increment c2.

b. End if.

c. Increment p.

iii. End while.

ii. End if.

iii. If c2 equals 0.

i. Increment c11.

ii. Copy word[i] content to index[m].name using strcpy() function.

73 | P a g e

73 | P a g e

iii. index[m].occ1 1 since it is a new word.

iv. Copy the name of the first document to index[m].fname1.

v. Increment m.

iv. End if.

f. End if.

g. Count 0.

h. Increment i.

i. (n and c2) 0.

31. End while.

32. (I, n, count, c2, p) 0.

33. While word2[i] doesn’t reaches NULL.

a. For loop j 0 to length of word2[i]

i. Word2[i][j] tolower(Word2[i][j]) converting each letter to lower case.

ii. While word2[i][j] i.e. the letter doesn’t belong to (a to z) or (0 to 9) or

NULL.

i. If word is ‘\n’ i.e. an Enter or change of line, replace it with ‘\0’

i.e. NULL.

ii. For loop k j to length of word2[i]

a. word2[i][k]word2[i][k+1] i.e. replace it with next

character and so on to remove that punctuator from

whole word.

iii. End for loop.

iii. Word2[i][k] ‘\0’ to End while.

b. End for loop.

c. While stopwords[n] doesn’t reaches NULL.

i. If strcmp(word2[i],stopwords[n]) i.e. word is equal to any of the

stopwords.

i. Increment the count.

ii. Break the while loop.

ii. End if.

iii. Increment n.

d. End while.

e. If count equals 0 i.e. the word2[i] is a keyword.

i. If c11 is not equal to 0.

i. P 0.

ii. While p is less than c11.

a. If word2[i] equals any of the previous index[p].name i.e. to

74 | P a g e

74 | P a g e

count number of occurences in 2nd document.

i. Increment index[p].occ2.

ii. Copy the name of the 2nd document to

index[p].fname2.

iii. Increment c2.

b. End if.

c. Increment p.

iii. End while.

ii. End if.

iii. If c2 equals 0.

i. Increment c11.

ii. Copy word2[i] content to index[m].name using strcpy()

function.

iii. index[m].occ21 since it is a new word.

iv. Copy the name of the second document to index[m].fname2.

v. Increment m.

iv. End if.

f. End if.

g. Count 0.

h. Increment i.

i. (n and c2) 0.

34. EndWhile.

35. I 0.

36. While p is less than c11 where c11 contains total number of keywords.

a. Write string index[p].name to fp3 using fprintf().

b. If index[p].occ1 is not equal to 0.

i. Write string index[p].fname1 as “->docname1” to fp3.

ii. Write count index[p].occ1 as “(count)” to fp3.

iii. If index[p].occ2 is not equal to 0.

i. Write string index[p].fname2 as “->docname2” to fp3.

ii. Write count index[p].occ2 as “(count)” to fp3.

iv. End if.

v. Write “\n” to fp3 to change the line.

c. End if.

d. Else If index[p].occ2 is not equal to 0.

i. Write string index[p].fname2 as “->docname2” to fp3.

ii. Write count index[p].occ2 as “(count)” to fp3.

iii. Write “\n” to fp3 to change the line.

75 | P a g e

75 | P a g e

e. End else if.

f. Increment p.

37. End while.

38. system(“ time ./a.out”) to print total time taken.

39. fclose fp1, fp2 and fp3.

40. End.

 The second algorithms that define the hash key is described underneath

Algorithm 6-2 Hybrid Hash table

1. Begin.

2. Declare a macros MAX 500.

3. Define a structure Node.

4. In struct Node, declare character array DATA and a struct node pointer NEXT.

5. Declare a function append(struct node** head_reference, New Data)

a. Allocate new_node using malloc.

b. Lasthead_reference

c. Copy New Data to new_node->data.

d. Assign NULL to new_node->next.

e. If head_reference is NULL, then

i. Head_reference new_node.

ii. End the function.

f. End if.

g. While last->next doesn’t reaches NULL i.e. traverse through list

i. Last last->next.

h. End while.

i. Last->next new_node.

6. End function declaration.

7. Declare a function printList(struct Node *node, FILE *fp)

a. C 0.

b. While node doesn’t reaches NULL

i. Write to the file fp, node->data as “data\n” using fprintf().

ii. Increment c.

iii. Node node->next.

76 | P a g e

76 | P a g e

c. End while.

d. Print the number of words i.e. c.

8. End function declaration.

9. Declare main.

10. Initialize 2 file pointers fp1 and fp2.

11. Initialize hash_size as 47.

12. Declare a struct node pointer array head of size hash_size.

13. Declare a character pointers fileText1 to store file content as a string.

14. Dynamically assign memory to the character pointer, fileText1 

malloc(100000*sizeof(char)).

15. Initialize different integer variables (i, j, k, n, m, count, p, key) 0.

16. Initialize delimiter delim “ “ .

17. Declare two character double pointers word and new to store the words and then

keywords respectively from the string.

18. Dynamically assign memory to both character double pointers, word and new

malloc(70000*sizeof(char)).

19. Declare a character pointer STOPWORDS with limit MAX and initialize all the

stopwords(e.g. a, an, he, she etc.) to it that needs to be removed without punctuations.

20. FP1fopen(path to 1st file, read mode).

21. FP2fopen(path to new file in which keywords at their respective indexes would be saved,

write mode).

22. If FP1 equals NULL

a. Print “cannot open file” message.

b. exit(0) to end the code immediately.

23. End if.

24. While FP1 doesn’t reaches end of file; (!feof(fp1))

a. fileText1[i] fgetc(fp1) i.e. get each character from fp1 and write it to

fileText1.

b. Increment i.

25. EndWhile.

26. I 0.

27. word[i] strtok(fileText1, delim) to tokenize 1st word from the string on delimiter basis.

28. While word[i] doesn’t reaches NULL

a. Increment i.

b. word[i] strtok(NULL, delim) Syntax for strtok function.

29. Endwhile

30. I0 .

31. While word[i] doesn’t reaches NULL.

a. For loop j 0 to length of word[i]

77 | P a g e

77 | P a g e

i. Word[i][j] tolower(Word[i][j]) converting each letter to lower case.

ii. While word[i][j] i.e. the letter doesn’t belong to (a to z) or (0 to 9) or

NULL.

1. If word is ‘\n’ i.e. an Enter or change of line, replace it with ‘\0’

i.e. NULL.

2. For loop k j to length of word[i]

a. word[i][k] word[i][k+1] i.e. replace it with next

character and so on to remove that punctuator from

whole word.

3. End for loop.

iii. Word[i][k] ‘\0’ to End while.

b. End for loop.

c. While stopwords[n] doesn’t reaches NULL.

i. If strcmp(word[i],stopwords[n]) i.e. word is equal to any of the

stopwords.

1. Increment the count.

2. Break the while loop.

ii. End if.

iii. Increment n.

d. End while.

e. If count equals 0 i.e. the word[i] is a keyword.

i. new[m] strdup(word[i]) i.e. makes a duplicate copy of word[i] and saves

it in new[m].

ii. Increment m.

f. End if.

g. (count and n) 0.

h. Increment i.

32. End while.

33. For p 0 to hash_size, do

a. Head[p]NULL.

34. End for.

35. While new[m] is not equal to NULL

a. Len length of new[m].

b. Key sum of integer ASCII equivalents for first, middle and last characters of

new[m].

c. Key key%hash_size.

d. Call append function as append(&head[key],new[m]).

78 | P a g e

78 | P a g e

e. Increment m.

36. End while.

37. For i 0 to hash_size

a. Print meassage “At index (i)”.

b. Write the same message to fp2.

c. Call the function printList(head[i],fp2).

38. End for.

39. system(“ time ./a.out”) to print total time taken.

40. Fclose fp1,fp2 and fp3.

41. End

6.2 CBDFI-SPATIAL SEARCH MODEL

Spatial keyword search index is incomplete until but the keyword and spatial location are

indexed. Most of the research perform these both task separately but for more efficient result a

pruning of keywords and the text should be performed at same time and with same indexing

technique. Use of data driven spatial index are not scalable and their support is expensive hence

the proposed index use space driven index i.e. quad-tree for better results

Hy-S Indexer perform textual indexing first where from the provided document Đs (spatial,

attribute based or both) the keyword dictionary (φ) is generated with each keyword (k) is given

a weight (ψ) depending upon its relevance and importance in the context. A threshold value is

used to identify whether the given keyword will be useful for the operation or not. Hy-S indexer

used quad-tree from spatial indexing because of its low cost while maintain the data structure

and its uniform distribution mechanism.

Hy-S indexer will be having excessing keyword from the dictionary, followed by

checking it relevance in the quad-tree and finally storing the information in the inverted index

file. The indexed number will be decided by the hash table. The number of the keyword in the

dictionary and the number of matched location in the quad-tree will help us in identify the hash

function and further the hash key that will store the inverted index file with then. The spatial

relevance and the textual relevance is calculated to match the keyword in the search with the

keyword in the dictionary and if a match is registered that that location node is pointed which is

associated with different location that can be addressed that can have the similar keywords in

79 | P a g e

79 | P a g e

them.

The spatial model of CBDFI model can be described by following formulas and the

respective notations are used (table 6-1)

Table 6-1Notation of CBDFI search Model

Spatial Object Obs

Object Location Obs.loc

Keywords ķ

Query ∂

Query Keywords ∂. ķ

Dictionary φ

Dictionary of keywords φkey

Dictionary of hs code φhs

Weight ψ

Weight of keywords ψkey

Weight of hs code ψhs

Hs code hs

Document Đ

Ranking function Г

Length of keyword dictionary l_k

Length of spatial dictionary l_h

The spatial search indexer is based on the inverted index, hash table and quad-tree. Along

with the same the search engine also utilize the hidden markov model of them for calculating the

probability of transmission of hs code and calculation of their weight to travel from one code to

another, this weight decide the distance between the two nodes of the hs quadtree which is whole

responsible for this search algorithm. Various different formulation used in this research with

80 | P a g e

80 | P a g e

their explanation is described underneath.

Hash function: this function is responsible for finding out the size of the hash table and is

calculated as follows

𝑑𝑖𝑐𝑡 𝑙𝑒𝑛𝑔𝑡ℎ

ℎ𝑎𝑠ℎ 𝑘𝑒𝑦 = ∑ ψ(i) ∗ Г⁄𝑚

𝑖=1

Where the length of the dictionary could be l_k for keyword and l_h for spatial objects, ψ weight

of the key or hs code and Г is the ranking function defined to express the tectual and spatial

combine impact factor. And m is defined as the length of dictionary modulus p Є palpha{}.

𝑚 = 𝑙_ℎ%𝑝

The ranking function is defined as the summation of the spatial relevance, textual relevance,

hidden markov model transition and emission probability and the hs distance calculation

Any query (∂) fired in the CBDFI model will be defined as (∂:loc; ∂:doc; k). where

∂:loc is the spatial representation of lat/long pair encoded in hs code, ∂:doc is the set of keywords

in the query ∂ and k is the parameter in the Top k query. A ranking function (Г) will compute the

relevance score of spatial object Di and the query ∂

Гtotal = Φ Гsp + (1- Φ) Гtx

Where Гsp is the spatial ranking score and Гtx is textual ranking score and Φ Є {0- 1} defines the

relevance, i.e. not all query will have same importance of location and keyword some may have

more preference over others. Spatial ranking score will be calculated as follows:

Гsp (Di: doc; 𝛛: doc) = 1 −

Dis(Di: loc; 𝛛: loc)

𝑀𝑎𝑥_𝑑𝑖𝑠

81 | P a g e

81 | P a g e

And the textual ranking score will be calculated depending on various factors.

Г𝑡𝑥 (𝐷𝑖: 𝑑𝑜𝑐; 𝝏: 𝑑𝑜𝑐)

= ∑ (
𝑓(𝑡, 𝐷𝑖: 𝑑𝑜𝑐)

|𝐷𝑖: 𝑑𝑜𝑐|
∗ log (

|𝜑𝑘𝑒𝑦|

|{𝐷𝑖: 𝑑𝑜𝑐 ∈ 𝜑𝑘𝑒𝑦|𝑡 ∈ 𝐷𝑖: 𝑑𝑜𝑐}|𝑡 ∈𝐷𝑖:𝑑𝑜𝑐∩ 𝝏:𝑑𝑜𝑐
) ∗

𝑓(𝑡, 𝝏: 𝑑𝑜𝑐)

|𝝏: 𝑑𝑜𝑐|

∗ log (
|𝜑𝑘𝑒𝑦|

|{ 𝝏: 𝑑𝑜𝑐 ∈ 𝜑𝑘𝑒𝑦|𝑡 ∈ 𝝏: 𝑑𝑜𝑐}|
))

/ ∑ √
𝑓(𝑡, 𝐷𝑖: 𝑑𝑜𝑐)

|𝐷𝑖: 𝑑𝑜𝑐|
∗ log(

|𝜑𝑘𝑒𝑦|

|{𝐷𝑖: 𝑑𝑜𝑐 ∈ 𝜑𝑘𝑒𝑦|𝑡 ∈ 𝐷𝑖: 𝑑𝑜𝑐}|
)2

|𝐷𝑖:𝑑𝑜𝑐|

𝑡=1

∗ ∑ √
𝑓(𝑡, 𝝏: 𝑑𝑜𝑐)

|𝝏: 𝑑𝑜𝑐|
∗ log(

|𝜑𝑘𝑒𝑦|

|{ 𝝏: 𝑑𝑜𝑐 ∈ 𝜑𝑘𝑒𝑦|𝑡 ∈ 𝝏: 𝑑𝑜𝑐}|
)2

|𝝏:𝑑𝑜𝑐|

𝑡=1

The hybrid search model used in CBDFI model Top k spatial keyword search query to

fetch the result from the column database store in form of a spatial quad-tree designed

specifically for most relevant and frequent keyword processed by the system. System is designed

in such a way that it will render itself as per the data feed and present most optimal result when

used to search the same family keywords. Another important aspect of this model is that the node

of independent quad-tree can address 24 distinct location simultaneously in a single cycle and all

the required location and their corresponding keywords will be stored in same index at same

level and under the singular node. The ranking function defined above will be render with the

firing of the spatial query where the associated query parameter with the “hs code” is generated

which identify required location for the search.

6.3 Hi-S TREE

The formation of the Hs-I tree plays the most important role in the fast running of the

CBDFI model. The every “hs code” encounter by the system the quad tree start taking shape. The

calculated probability of “hs code” to traverse from one “hs code” to another decide the formation

of the quad tree. Along the present “hs code” the most frequent “hs code” is identified and the

distance of each “hs code” from most frequent “hs code” is calculated and registered. On the base

of the most frequent “hs code” and their respective distance the limit of the quad-tree and the

82 | P a g e

82 | P a g e

insertion of the new element in the quad-tree is decided.

Hs-I tree of the CBDFI model will be stored in files on the memory with predefined size.

For each spatial object Obs a fixed size slot will be fixed in the file page. The number of the

spatial object in the page will be decided as per the ration of the page size and bit size of spatial

object i.e. 7 bit. Similar hs code will be stored in the same page under the same node of the quad

tree. The hs code will be tagged with id with respect to the maximum frequency keyword to ease

the transition of the hs code from the memory

Let us assume that first hs1 code is registered by the system with probability prob(hs (1))

be x, so this node will be considered as the parent node. On arrival on the next hs (2) code, the

probability prob(hs (2)) is calculated and let it be y. Hence if the probability y>x then the hs (2)

will replace hs (1) and will become the new parent node and hs (1) will become the child node of

the tree. On the arrival of the next hs(3) code, the same process will be repeated i.e. the probability

of hs (3) will be calculated and compared with the present “hs codes” and if its probability is the

highest then hs (30 will replace the parent node. The process will keep on till all the four node of

the quadtree is achieved. Along with the calculation of probability also the distance and averaging

of the distance is taken care. If the distance of the upcoming “hs code” is not similar to that level

child node then that “hs code” will be added as the child node in the next level to the parent which

have the least distance and within the limit of tree.

6.3.1 INSERTION IN Hs-I TREE

In the process of insertion of new node in the hs-I quad tree location table is

checked. If the location table is empty or the no reference of the “hs code” is identified

then empty slot in the file f is identified and “hs code” is stored there. With each write

operation on the file, the location table is updated. Along with the calculation of the

probability of traversal of the “hs code” is also generated in stored in the location

probability table and maximum probability pointer is also updated If the “hs code” in

present in the location table, the probability of that “hs code” is calculated and compared

with the maximum probability and swapped with latter in case of higher probability.

The following algorithms will explain the insertion deletion and updating of the hs-I

83 | P a g e

83 | P a g e

tree with flowchart in figure 5-1 Start

Input hs code

Count (Loc_tb)

Insert hs code in file empty slot

Calculate Probability and Distance of hs code

Create Max_prob and Avg_distance

Check Loc_tb for hs Code

Hs_prob >& Max_prob

Update hs_24
Hs_Avgdis >&

Identify node with minimum average distance

Insert hs code in file empty slot

Start

Fig6-1: Process flow for inserting node in Hs-I tree

Identify hs_24

Calculate Probability and Distance of hs code

Calculate average Distance of hs code within Limit

Calculate cumulative
keyword weight

Swap hs code

Identify location position

84 | P a g e

84 | P a g e

Algorithm 6-3 Insert in Hi-s tree

1: hs_code  input()

2: if loc_hs is null

3: f_hs  open(“locationhs.txt”,”w”)

4: f_hs.write(hs_code)

5: prob_hs Cal_probability(‘hs_code’)

6: mx_hs  hs_code

7: dis_hs Cal_distance(‘hs_code’)

8: max_prob prob_hs

9: avg_distance $avg(dis_hs)

10: else:

11: for i in range(size(loc_hs)

12: if (hs_code == loc_hs(i))

13: f_hs1

14: else:

15: f_hs0

16:if (f_hs == 0)

17: prob_hs Cal_probability(‘hs_code’)

18: dis_hs Cal_distance(‘hs_code’)

19: if (prob_hs > max_prob)

20: temp mx_hs

21: mx_hs hs_code

22: hs_cur hs_code

85 | P a g e

85 | P a g e

23: hs_code temp

24: avg_distance+1 $avg(dis_hs)

25: if (avg_distance +1 > avg_distance)

26: for i in range (size(loc_hs)

27 p_node min_dis(hs_cur, loc_hs(i))

28: else:

29: for i in range(size(hs_24)

30: hs_code = hs_24(i)

31: indi

32: for i in range(24)

32: hs_code (location) == hs_24(ind).location

33: calculate_cum_key_weight(hs_24(ind),key)

34: f_hs.write(hs_code)

35: f_hs.close()

6.3.2 DELETION AND UPDATION IN Hs-I TREE

The deletion operation will be performed on the Hs-I tree whenever there will be a

need for updating the nodes of the hs-24 node. On identification of the new location code

or keyword the CBDFI model insert the new node in the hs- I tree and update the weight

median values of the keyword at that hs-24 node. Therefore to update weight median of

keyword the target hs-24 node will be identified, and using the depth first techniques the

left most child node will be checked for the suitable projected distance. All 6 location

weight median values will be deleted and inserted again with the updated value.

86 | P a g e

86 | P a g e

6.4 CBDFI- SEARCH ALGORITHM

The CBDFI model, search spatial object by traversing through the nodes of Hi- S tree.

Hybrid spatial indexing algorithm, index keywords associated with a particular hs-24 and store

them at the nodes of the quad-tree. For searching any spatial object, the respective “hs code” node

will be identified and all location associated with that “hs code” or that “hs code” index will be

searched for positive match of the keyword. Hence this model eliminate remaining hs-24 node

which are not associated with query location and optimize the number of location to be searched.

The Query optimizer designed for the CBDFI model, utilize a pre-fetch table to store list of various

location hs code and global probable keyword at respective “hs code”. Pre fetch table plays most

crucial role in reducing the fetch time of the query and improving the execution time of the query

itself.

The CBDFI model extract query keywords and location from top k spatial keyword query

and search spatial object with similar or correlated keyword. Search algorithm convert the query

location into “hs code” and check for the same in the list of “hs code” in the pre-fetch table either

the “hs code” itself or for the index of “hs code”. If user location is new then the generated “hs

code” is inserted in the Hs-I Tree and recalibrate the pre-fetch table. Therefore the search

algorithm check whether the user location’s index can be identified and all the associated location

will that index will the subset of the location where the required keyword need to be matched.

The CBDFI model process each and every keyword extracted for the dataset and weight

them on following bases: 1) location of a keyword, 2) correlation of the keywords with the nearby

keyword, and 3) probability of occurrence of keyword at that location. Each location in hs -24

node will have multiple keywords associated with one or many spatial object at that location.

Therefore; from a list of various keywords and their frequency of repetition for a particular spatial

object, the most frequent keyword at that location will be identified. In case of having multiple

spatial objects at the same location, most frequent keyword of each object will be correlated with

all the keywords at that location and based on heuristic study the probability of occurrence of a

particular keyword will be calculated The local probable keywords for that location will be

identified based on these probabilities. As multiple location comprise of the particular hs -24 node,

hence local probable keywords for hs -24 will be identified. Further multiple hs-24 code are

87 | P a g e

87 | P a g e

linked under same index hence the global probable keywords for that index will be identified and

stored in the pre-fetch table. Hence the CBDFI model’s pre-fetch table turn out to be the first

location where the query keyword is checked.

The CBDFI search model will follow three search routines to identify spatial object with

the query keyword. In the first search routine, search algorithm will read the list of global

probable keywords associated with the index of the user “hs code” and will identify user keyword.

On a positive identification of a keyword, top k location with minimum distance score from the

user location will be returned back to the user as the query result. The CBDFI search algorithm

will return positive match with the time complexity of O(1) for directed associated keywords. To

identify indirectly associated keywords the CBDFI search algorithm will follow the second search

routine where the model will retrieve the list of all the local probable keywords associated with

that “hs code” index. Form this list of keywords the user keyword will be matched and location

of the spatial objects will be identified. This is the divide and conquer approached followed by

the CBDFI model where the only identified index of “hs code” will be searched for the result of

the query. And in the worst case the third routine will be executed where the whole Hs-I tree will

be searched for user keyword and the result will be populated back to the user and pre-fetch table

will be updated. Hence the CBDFI model search directed associated as well as indirectly

associated keyword for the user query. The system is designed in such a way that with every

search query, the system update the pre-fetch table with new location and keyword. With more

number of queries better and more efficient the search algorithm run and it cater all the new

keyword and location to populate updated index and Hs-I tree. The following flowchart will

explain the working of the search algorithm in figure 6-2.

Convert location into q_hs code

Start

Input query (keyword, Location and K)

Check q_hs code

index from pre

Y

N

Insert hs code into hi-s

quadtree

Create list of all keyword for every hs code in the hs array

Create array of most prominent keyword q_mpk at that hs index store in
prefetch

Create array of distance of all the hs code from selected parent hs
code

Identify the keyword index of q_mpk from MPK index table stored at prefetch
and create q_mpk_index list

Calculate spatial relevance score for q_hs, textual relevance score for
q_k

Check q_k in
q_mpk list

Y

C B N

83 | P a g

Create an array of all hs code

89 | P a g e

List all the location where that keyword is found

Return top k location as query output

Stop

Calculate cumulative

probability of keyword

Fig 6-2 CBDFI Search flowchart

C B

List all the keywords k for each index in the q_mpk

Check q_k
in k list

Y

N

Calculate Median of

keyword

Check keyword

median in

whole HI-s
N

Y

Identify hs node location and calculate

keyword covalence matrix for probability of

Recalculate spatial relevance score for q_hs,
textual relevance score for q_k

Rank the location as per the ranking function and value of k

90 | P a g e

The algorithm of CBDFI search algorithm is as follows:

Algorithm 6-4: Search algorithm for CBDFI model

1: q_loc ∂.location

2: q_key ∂.keyword

3: q_k ∂.k

4: q_hs generate_hs(q_loc)

5: for i in range each pf_hs[]

6: if(q_hs != pf_hs[i])

7: Insert_hi_stree(q_hs)

8: else:

9: for i in range size(hs_index[])

10: Ar_hs[]= hs_index[i]

11: for j in range size(hs_index[i].keywords[])

12: Ar_hs_key_list[] = hs_index[i].keywords[j])

13: q_mpk[]

calculate_mostprominetkeyword(Ar_hs_key_list[])

14: Cal_spatial_rel(q_hs)

15: Cal_textual_rel(q_hs)

16: For I in range size(q_mpk[])

17: If (q_key != q_mpk[i])

18: For j in range(q_mpk[i].index[])

19: Q_mprk[] =q_mpk[i].index[j]

20: Elseif(q_key != q_mprk[])

21: Q_key_mediam calculate_median(q_key)

22: For I in range size(hi_s_key_median[])

23: If (q_key_median == hi_s_key_median[i])

24: m_hsIdentify_hs_loc(q_key)

25: Loc_match1

26: If (loc_match !=1)

27: Goto step 7:

28: Else:

91 | P a g e

29: Cal_cum_prob(q_key)

30: Cal_spatial_rel(m_hs)

31: Cal_textual_rel(m_hs}

32: Match_loc[]hs_q_mpk[i]

33: Calculate_rank(q_k)

34: R_loc ∂.result

6.4.1 ACCURACY

The CBDFI model, search spatial object by traversing through the nodes of Hi-

S tree. For any spatial object, their location “hs code” must reside on the node of the

Hi-S tree. If the object location have some associated keywords which have high

probability of occurrence than that location keyword will be present in the node of the

quad tree. Therefore identification of hs-24 node in the Hs-I tree is done by calculating

the projected_distance of the query location “hs code” and identify projected_distance2

area of the hs- 24 node in Hs-I tree where user’s projected_distance lies in the range.

This projected_distance2 will act as the splitting function of the node of the Hs-I tree

and the construction of quad tree ensure that division of the node will be based on the

projected_distance2 of the “hs codes”. Hence the CBDFI model correctly identify the

exact hs_24 node where the location will be present and there will be no other node in

the Hs-I tree where that location can be allocated. Now each location of the hs-24 code

will have median of weight of the local probable keywords and if the query keyword

weight doesn’t change the median of that node then that location will be correct

location where the required location of the spatial object of the query reside. Hence

validating the correctness of the CBDFI search algorithm.

6.4.2 TIME COMPLEXITY

The CBDFI model, search spatial object by traversing through the nodes of Hi-

S tree let us assume that there are l_h spatial object in the spatial dictionary and l_k

keywords in the keyword dictionary designed within the search region of the

algorithm. The indexing algorithm designed for the CBDFI model will divide, various

hs code into m groups of spatial objects. Therefor the time complexity for all the three

subset will be calculated. For searching any object in the list (size n) the time complicity

92 | P a g e

will be O(n) which will be best case scenario for the CBDFI search algorithm. For

search the second case when the list of local probable keywords for each spatial object

in the search region, the worst case time complexity of search an object will be O(

((l_h/m)-1)l_k) . And time complexity for searching a keyword in the list of keywords

using a link list will be O(l_k). Therefor for the third case where all the element of the

time complexity for the worst case seniors will be O(n(1+ l_k *((l_h –m)/m)l_k))).

In the empirical study, the performance of the algorithm is highly efficient as a large

number of objects and quad tree nodes are eliminated by making use of projected

distance and weight median of the keywords

5.3 INFERENCE

This chapter present the novel location search algorithm based on hs code and for the

column database. The chapter also provide the time complexity of the proposed algorithm of

O(n) in the best case scenario when the keyword will be in the pre fetch table.

93 | P a g e

CHAPTER 7

RESULTS & DISCUSSION

In order to test the performance of the spatial search algorithm, the CBDFI model is

tested on an airplane dataset, provided by the aviation department of the USA. This dataset is

freely available in text (tab delimited) format for research purpose and provide year wise

finding of 2500 flights departed from New York and Washington DC to South America,

Africa, Europe, United Kingdom and India. This dataset provide information regarding

capacity of aircraft, duration of travel with source-destination station, staff information,

passenger information with luggage report, passenger reviews and aircraft maintenance report

etc.

The CBDFI search algorithm assumed that the spatial object provided in the dataset

will be associated with location and description document Đ where Đ will define the

characteristic of spatial object. The CBDFI spatial object can be defined as follows:

Obs(1)  { Obs.loc(1), ķ(1)}

The CBDFI model is designed to index unique keywords identified from the textual

information extracted from the description document Đ. Hence any spatial object will be

collection of location Obs.loc(1) and associated keywords ķ(1) mentioned in the document Đ.

The Obs.loc(1) will be converted by in hs code by hs encoder and ķ() will be set of all the

relevant keywords that can be extracted from the document Đ. Hence

Obs(1)  { hs(1), ķ(1)}

Obs(2)  { hs(2), ķ(2)}

.

Obs(z)  { hs(z), ķ(z)}

Hence all the z different spatial object detected by the CBDFI model will be converted

into “hs code” and the set of different keyword associated with them. The CBDFI model use

the column database Monet Db to store “hs code” generated by the system, where each column

94 | P a g e

of “hs code” will comprise of their corresponding keyword and keyword frequency of

occurrence.

These hs columns will assist the system in calculating the highest frequency keywords

associated with each hs code. The calculated frequencies of keyword will succor in

understanding the importance of the keyword and there relevance with respect to a given

location code. A list of highest frequency keywords will be store in the linked list in the pre-

fetch table and will act as the first benchmark for the search algorithm.

During the pre-processing stage, the system identify spatial objects which could be

either at same location or at same generated hs code. For existing “hs code”, no new entry need

to be addressed in the database as well as in the pre-fetch table as this location will be part of

the 24 location of a given hs node. For multiple spatial objects at given location, covalence

matrix of the different keywords will be generated to identify the similarities and cumulative

weights of the keywords at that location. This covalence matrix will be generated considering

textual relevance of the keyword with respect to each other and that location. After the pre-

processing stage the query optimizer will calculate the probability_weight of the “hs codes”

and their probability of transition from an hs code to another hs code. The maximum

probability_weight of the generated “hs code” with the will be consider as the parent node for

the hi-s quad tree. Based on the probability_weight, distance 2 and distance of generated “hs

code” the hi-s quad tree will be created. This quad tree will provide the spatial indexer of the

hs(1)

ķ_1(1)

ķ_1(2)

ķ_1(3)

ķ_1(4)

.

ķ_1(n)

hs(1)

freq(ķ_1(1))

freq(ķ_1(2))

freq(ķ_1(3))

freq(ķ_1(4))

.

freq(ķ_1(n))

95 | P a g e

location captured by the CBDFI model, and each node of tree will be future associated with

keywords registered at that “hs code”. The hs-I quad tree will also consider the most probable

keyword for all the keywords linked with the same keyword index and also the most probable

keyword for all keyword associated with the same hs index.

With the identification of all the keywords, locations and converting “hs code”, CBDFI

model will now index all the keywords and “hs code” present in the database. Over here the

dictionary of keyword and “hs code” will be generated which will be used as the feed for the

hi-s indexer. Keyword dictionary will be having all the keywords registered from the dataset

and will be linked with their respective weights

φkey = { ķ(1)* ψkey(1), ķ(2)* ψkey(2),…… ķ(l_k)* ψkey(l_k)}

And the location dictionary will be having all the hs codes

φhs = { hs (1)* ψhs(1), hs (2)* ψhs(2),……. hs (l_h)* ψhs(l_h)}

For both the φkey and φhs hash function will be generated which will help us in

generating the hybrid index for both keywords and hs code.

Hash key(keyword) = (𝐴𝑆𝐶𝐼𝐼(𝑓𝑖𝑟𝑠𝑡) + 𝐴𝑆𝐶𝐼𝐼(𝑚𝑖𝑑𝑑𝑙𝑒) + 𝐴𝑆𝐶𝐼𝐼(𝑙𝑎𝑠𝑡))⁄𝑙_𝑘%𝑝

Hash key(spatial) = (𝐴𝑆𝐶𝐼𝐼(6) + 𝐴𝑆𝐶𝐼𝐼(4) + 𝐴𝑆𝐶𝐼𝐼(2))⁄𝑙_𝑠%𝑝

where p Є p alpha{}, i.e. the denominator should be prime factor and for the hs

code. From this hash function following index will be generated:

Index keyword

Index no 0

Location

Obs.loc (1)

Obs.loc (2)

Obs.loc (3)

Obs.loc (4)

.

Obs.loc (m)

Loc_hs

hs(Obs.loc (1))

hs(Obs.loc (2))

hs(Obs.loc (3))

hs(Obs.loc (4))

.

hs(Obs.loc (m))

Loc_prob

prob(hs(1))

prob(hs(2))

prob(hs(3))

prob(hs(5))

.

prob(hs(m))

Loc_Distance

Dis(Max(hs) -hs(1))

Dis(Max(hs) -hs(2))

Dis(Max(hs) -hs(3))

Dis(Max(hs) -hs(5))

.

Dis(Max(hs) -hs(m))

96 | P a g e

Keyword1(hs1(keyword1)Σ ψkeyword1, hs2(keyword1)Σ ψkeyword1 , ….)

Keyword2(hs1(keyword2)Σ ψkeyword1, hs2(keyword2)Σ ψkeyword2 , ….)

Index no 1

Keyword (i)(hs1(keyword(i))Σ ψkeyword1, hs2(keyword(i))Σ ψkeyword1 , ….)

Keyword (i+1)(hs1(keyword(i+1))Σ ψkeyword1, hs2(keyword(i+1))Σ

ψkeyword2 , ….)

.

Index no Z

Keyword (z)(hs1(keyword(z))Σ ψkeyword1, hs2(keyword(z))Σ ψkeyword1 ,

….)

Keyword (z+1)(hs1(keyword(z+1))Σ ψkeyword1, hs2(keyword(z+1))Σ

ψkeyword2 , ….)

And Index Spatial

Index no 0

hs1(keyword1)Σ Prob(keyword1), keyword2)Σ Prob(keyword2) , ….)

hs2(keyword1)Σ Prob(keyword1), keyword2)Σ Prob(keyword2) , ….)

Index no 1

Hs i+1(keyword1)Σ Prob(keyword1), keyword2)Σ Prob(keyword2) , ….)

Hs i+2 (keyword1)Σ Prob(keyword1), keyword2)Σ Prob(keyword2) , ….)

 So on.

With the formation of the indexes the hs quad tree is recalculated for the weight of each hs node

and will rearrange all the node with same index will be presented under the same hs node. With

this the distance of the location “hs code” from the parent “hs code” will be recalculated considering

the distance mentioned by the query. Each hs_24 parent node will present the median of the

global probable keyword and weight of keyword mentioned in the query will be matched with

median of parent node and a desirable node will be identified and all the associated “hs code”

and their respective global probable keywords will present the result of the spatial search query

97 | P a g e

7.1 RESULTS

The CBDFI model spatial search algorithm was tested on airplane dataset from year

1975-2019, batches of 5 years each. Around 2500 different airplanes dataset was tested and

3456 associated text files defining the characteristic of the airplane investigation was recorded.

Form this dataset 11675 different location were captured and total of 6704 unique hs code were

generated. Form the textual description 87657 unique keywords were recoded. All six indexed

values from the p alpha{} universal set is checked and value 73 is selected for this hypothesis,

hence 73 indices were generated for 1200 each keywords for textual description and 92 hs

code each for location index.

Different element of the CBDFI model is tested for the given dataset to validate the

outcomes of the proposed search algorithms. Various element of the CBDFI model such as a)

hy-s indexer, b) hs encoder, c) Hs-I tree, d) pre-fetch table and e) search algorithm are tested

with conventional system on the basis of operating system, database, number of keywords &

indices and characteristic of the inputted query (search keyword and spatial-textual relevance).

The following section highlight the result of CBDFI model.

The indexer plays an important role in any search algorithm. The performance of the

indexer is dependent of the system configuration, hence the hybrid indexer is tested on

different operating system i.e. Windows, Linux and Mac for variable RAM (4GB, 8GB, and

16GB). Table 7-1 list the configuration of the systems used to test hybrid indexing algorithm

with inverted index, hash table.

Table 7-1 Configuration of different system used

SYSTEM RAM (GB) PROCESSOR

LINUX 4 AMD A-67310

LINUX 8 i5

LINUX 16 i7

WINDOWS 4 i3 5th gen

WINDOWS 8 i3 5th gen

WINDOWS 16 i3 5th gen

MAC OS 8 i5

98 | P a g e

All three indexing algorithms were compared for the execution time to process 87657

keywords and Table 7-2, 7-3, and 7-4 present comparison of execution time of the indexing

algorithm i.e. inverted index, hash table and hybrid combine hash inverted index deployed on

different operating systems.

Table 7-2 Execution time for Linux

RAM
(Gb)

Inverted Index (s) Hashing (s) Combine hybrid (s)

4 14.397785 1.490357 14.611997
8 3.198658 0.593466 3.227291

16 2.341510 0.439 2.384156

Table 7-3 Execution time for Windows

RAM
(GB)

Inverted Index (s) Hashing
(s)

Combine Hybrid
(s)

4 6.386 1.245 5.785

8 3.118 0.522 2.883

16 1.499 0.254 1.2

Table 7-4 Execution time for Mac

RAM
(GB)

Inverted Index (s) Hashing
(s)

Combine Hybrid
(s)

8 3.864633 0.95324
08

3.846816

From the three operating systems, Windows (i3 5th gen) operating system with 8GB

RAM is selected to test the performance of the CBDFI search algorithm. This system

configuration will be basic requirement for use of CBDFI model to search spatial objects. The

systems were tested for varied number of keywords and the presented result is verified index

number 73. The following graph will show case the performance of the combine indexing

algorithms in term of execution time with increasing RAM size. With the increase in the RAM

size better performance and less execution time of algorithms is encounter which can be

explained in figure 7-1 for the Linux environment and figure 7-2 for the Windows

environment. And figure 7-3 showcase the overall performance of all the three indexing

algorithm for all the operating systems.

99 | P a g e

Fig 7-1 Performance of indexes on Linux

Fig 7-2 Performance on Indexes on Windows

20 15 10

Main Memory Size

Inverted index

Hashing

Combined

Linear

16

14

Linux

20 15 10

Main Memory Size

Inverted Index

 Hashing

Combined

Linear

Windows

100 | P a g e

16 Linux 8 Windows 8 Linux

Ram

4 Windows 4 Linux

0

2.34151 2.384156

0.439 0.522 0.593466
1.245 1.490357

2

2.883 3.1986583.227291 3.118

6

4

5.785
6.386

8

Hybrid Hash Inverted

12

10

Hash
14

Inverted 14.39778514.611997 16

Operating system- Execution time

10

7.86

7.277.23

8.9763

6572

5727

8.9983 9.0838

2473

.8628

32782

6

6.87

5.98 0763

4

2

10 20 30

No of Keywords(k)

40 50

GeoDatabase SQL Database Column Database

5.

7.

5

7.
6.

7.

Fig 7-3 : Consolidated Performance of all the indexing algorithm

CBDFI model thrives on the pre-fetch table, where the global probable keywords are

stored. Adaptive asynchronous pre-fetching algorithm was deployed on Window operating

system and tested for three different databases i.e. GeoDatabase (PostGRE SQL), SQL

database (Oracle 11g) and Column Database (MonetDb). The figure 7-4 showcase the time

taken by the three database to deploy pre-fetch table based on number of keywords.

Fig 7-4 : Execution Time for formation of Pre-fetch table

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

Ex
ec

u
ti

o
n

 T
im

e
(S

ec
)

101 | P a g e

The hybrid indexer will be used for the textual keyword as well as for the location

keywords too. For processing the location using hash inverted index, hs code of the respective

location will be generated using hs encoder. This hs encoder will be compared with the

conventional location encoder Geohash code. The comparison will be done on the basis of the

distance from the user location for which the location code i.e. Geohash and Hs code need to

be created. The table 7-5 showcase the performance comparison of Geohash code and Hs code.

Table 7-5 GeoHash vs. Hs code Generator
Distance (m) GeoHash(ns) Hs code(ns)

10 2.5678 9.1231

50 5.1435 10.1753

100 8.9657 11.6983

200 10.1098 12.111

500 12.5675 13.2363

750 13.2543 14.9776

1000 15 15.8776

1500 16.1765 16.8734

2000 17.2897 17.1

4000 18.6275 17.8948

8000 19.7765 19.6874

10000 21.4654 19.9864

20000 23.2876 22.6547

40000 27.1453 26.9976

102 | P a g e

100000 31.6756 31.4764

From figure 7-5, it can be concluded that hs code generator take comparatively less

execution time to generate location code then Geohash considering large distance from the

user location. From the hypothesis and the experiment can validate the reason for better

performance of hs code is convergence of 24 location at single hs-24code. Therefore the CBDFI

model produce better result for large distance dataset hence the airplane fleet management

system work best with CBDFI model.

Fig7-5: Execution time taken by Geohash and Hs code to create location code

100000 120000 40000 60000 80000

Distance(m)

20000 0

0

5

10

GeoHash(ns)

Hs code(ns)
15

20

25

30

35

Location Code genration

Ex
ec

u
ti

o
n

 t
im

e

103 | P a g e

The hybrid indexer is now compared with textual indexer i.e. inverted index and

hashing as well as for spatial indexer i.e. Geohash. The following table and graph showcase

the performance of the hy-s indexer in context of the execution time. The table 7-6 present the

performance of the indexing algorithm with respect to no of keywords registered for textual

indexing, and figure 7-6 show execution time vs. no of keywords graph.

Table 7-6 Performance comparison of indexing algorithm depending on keywords

No of keyword Hashing(s) Inverted

Index(s)

Hybrid Hash

Inverted Index

(s)

5 0.02 0.01 0.01

25 0.07 0.04 0.12

50 0.12 0.15 0.13

67 0.27 0.45 0.15

90 0.34 0.49 0.18

135 0.43 0.78 0.24

165 0.55 1 0.27

270 0.64 1.6 1.7

590 0.78 4.7 4.9

680 0.98 5.1 5

790 1.4 9.1 7.9

1075 1.8 9.8 9.9

1548 1.9 10.1 9.8

2598 2.1 10.6 9.7

4789 2.6 12 10.9

9876 2.8 13.5 12.8

15600 2.9 13.6 12.9

34679 3.1 13.4 13

75342 3.4 13.2 13.2

87567 3.45 13.29 13.09

104 | P a g e

From the figure 7-6 it can easily be identified that the proposed index Hy-s Indexer

give better execution time with increase in the number of keywords and hence it is suitable

when working with spatial big dataset. The performance can be future improve with more

number of dataset keyword available for indexing.

Fig 7-6: Indexing algorithms: No of keyword vs. execution time graph

The table 7-7 present the performance of the indexing algorithm with respect to no of

hs code keywords registered for spatial indexing, and figure 7-7 show execution time vs. no of

keywords graph. The hy-S indexer is compared with the Geohash to validate the execution

time taken by the proposed indexer while working with spatial keywords. The figure7-7 will

identified and verify that the proposed indexer can work simultaneously for the textual

indexing as well as spatial indexing and produce result that can be incorporated together in a

quad tree and present a consolidated spatial quad tree with global probable keywords

associated with each hs-24 node in the Hs-I tree.

Index Execution time

16

14

12

10

8 Hashing(s)

Inverted Index(s)

6 Hybrid Hash Inverted Index (s)

4

2

0

0 20000 40000 60000 80000 100000

No of Keywords

Ex
ec

u
ti

o
n

 t
im

e(
se

c)

105 | P a g e

Table 7-7 Comparison of geohash and hy-s indexer w.r.t keywords

No of keyword Geohash(ns) Hy-S Indexer

50 0.23 0.28

135 0.56 0.56

165 0.6 0.61

270 0.67 0.65

590 0.87 0.8

680 0.98 0.86

790 1.32 1.23

1075 1.5 1.34

1548 1.7 1.45

2598 2.1 2

4789 5.3 4.8

6074 5.8 5.1

Fig 7-7: Execution time vs. keyword graph of Hy-s Indexer

P alpha{} universal set plays the most crucial role in improving the performance of the

hybrid spatial indexer. If the number of the indices to be created is pre-assumed then the

performance of the indexer can be monitored more efficiently. The table 7-8 and figure 7-8

Hy-S Indexer Geohash(ns)

Location Keywords

7000 6000 5000 4000 3000 2000 1000 0

7

6

5

4

3

2

1

0

Indexing of location Keywords

Ex
ec

u
ti

o
n

 t
im

e
(n

s)

106 | P a g e

show the performance of the Geohash indexer and hy-s indexer with respect to the time taken to

execute index with increasing number of indices.

Table 7-8 Comparison of geohash and hy-s indexer (wrt to Indexes)

No of Index Geohash HI-S Indexer

2 0.01 0.011

3 0.02 0.024

5 0.02 0.024

7 0.02 0.034

11 0.03 0.031

13 0.04 0.051

17 0.09 0.052

19 0.1 0.079

23 0.11 0.092

29 0.23 0.19

31 0.34 0.4

37 0.36 0.41

41 0.45 0.45

43 0.46 0.49

47 0.47 0.53

53 0.51 0.61

59 0.53 0.67

61 0.54 0.63

67 0.67 0.53

71 0.89 0.51

73 0.87 0.61

79 0.91 0.78

83 0.94 0.82

89 1.06 0.91

97 1.11 1.3

107 | P a g e

1.4

1.2

1

0.8

0.6
Geohash

HI-S Indexer

0.4

0.2

0

0 20 40 60

No of Indexes

80 100 120

Fig 7-8 Execution time vs. no of Indices graph of Hi-S indexer

The Hy-S indexer is deployed in Hi-S tree to formulate spatial and textual indexer that

can be used in top-k spatial keyword search query. Conventionally there are three major search

algorithm in market: 1) IL- quadtree TopK- SK, 2) S2I –tree TopK- SK, and 3) I3- QuadTree

TopK- SK. Table 7-9 showcase the comparison between the existing 3 spatial search

algorithms.

Table 7-9 Comparison of Existing Spatial search algorithms

Search Algorithm IL-Quadtree

TopK- SK

S2I-Tree TopK-

SK

I3-Quadtree

TopK- SK

Textual Index Inverted Index Inverted Index Inverted Index

Data Structure Quad-Tree R-Tree Quad-Tree

Location Format Deg DMS DMS

Dataset Spatial-Temporal Spatial Textual Spatial Textual

Indexing Format Textual first Textual First Spatial First

Bounding

Condition

Ranking Function MBR Threshold Value

Ex
ec

u
ti

o
n

 t
im

e
(n

s)

108 | P a g e

These search algorithm use similar concept to search spatial object through Top-K

spatial keyword search query using combine spatial and textual index. The CBSFI search

algorithm will be compared with these 3 conventional search algorithm to validate the

performance of the proposed search algorithm w.r.t. the no of keywords, value of k and

spatial and textual relevance a. The table 7-10 will showcase the performance of the Hs-I

tree indices with existing conventional indices

Table 7-10: Comparison of Hi-S tree Execution time vs. No of Keywords

No of keyword S2I tree IL Tree I3 Tree Hi-S

Tree

50 0.36 0.31 0.34 0.3

135 0.578 0.512 0.565 0.5

165 0.87 0.76 0.8 0.71

270 1.05 0.98 1.01 0.97

590 3.65 3.01 3.54 2.98

680 4.45 4.0342 4.87 3.98

790 4.87 4.78 4.98 4.54

1075 6.34 6.12 6.31 6.01

1548 7.87 7.67 7.678 7.54

2598 10.76 10.76 9.87 9.67

4789 15.76 13.67 13.21 12.98

9876 26.86 22.087 23.67 21.87

15600 39.87 35.67 32.87 31.876

34679 51.98 49.78 45.87 45.76

75342 98.87 90.09 85.87 81.78

83456 110 101 94.87 87.87

87657 167.89 159 163 155

From figure 7-9 it can be easily identified that proposed index Hs-I tree perform

better as the number of keywords for indexing keep on increasing.

109 | P a g e

Figure 7-9: Performance comparison graph of various Search algorithms

The performance of the indices is also compared for the all the element of the p alpha

{} universal set table 7-11 and figure 7-10 and then best performance for the CBDFI model

was registered at value 73.

Table 7-11: Comparison of CBDFI search algorithm w.r.t. P alpha{}

No of Indices 67 71 73 79 83 89

Hi-S (65k Keywords) 72.72 70.87 69.98 71.09 73.82 75.937

Hi-S (75k Keywords) 85.982 83.762 81.9838 83.872 85.8633 87.863

Hi-S (85k Keywords) 92.988 90.762 88.98 91.0973 95.863 96.863

Hi-S (95k Keywords) 159.87 157.86 155.897 156.87 158.89 157.89

Hi-S (105k Keywords) 164.98 161.788 158.988 159.98 163.8776 167.97

100000 120000 80000 60000

No of Keywords

40000 20000 0

60

40

20

I3 Tree

Hs_I Tree

80

IL Tree
100

S2I tree

180

160

140

Ex
ec

u
ti

o
n

 T
im

e
(m

in
s)

110 | P a g e

Hs_I (65k Hs_I (75k Hs_I (85k Hs_I (95k Hs_I (105k

Keywords) Keywords) Keywords) Keywords) Keywords)

60

89 80

67

71

73

79

83

180

160

140

120

Fig 7-10: No. of keyword vs. Execution time of CBDFI model for p alpha {}

The table7-12 and 7-13 present a comparative graph comparing top k search based

on SI-tree, I3 tree and Hs-I tree and show case the execution time query to search a desirable

result. And the fetch time even keep on reducing with more number of queries been

fetched.

Table 7-12 Comparison of Search algorithms (wrt spatial vs. textual relevance)

alpha a SI-Tree(sec) I3- tree(s) Hi-S tree(s

0.1 4.6767 2.6762 2.6735

0.2 4.2355 2.7653 2.9098

0.3 3.6762 3.7624 3.02343

0.4 4.7582 4.7292 3.9876

0.5 5.6782 5.0187 3.8656

0.6 5.7686 5.2827 3.562

0.7 4.4673 5.8622 2.87783

0.8 3.5752 5.7872 2.6754

0.9 2.3567 6.982 2.3576

Table 7-13 Comparison of Search algorithms (wrt k)

k SI-Tree(sec) I3- tree(s) Hi-S tree(s

1 5.8762 5.7692 3.75822

3 4.7682 4.54383 3.9792

5 3.6729 3.4563 3.2108

Ex
ec

u
ti

o
n

 t
im

e
(M

in
)

111 | P a g e

7 2.6582 2.9882 3.6827

9 2.8782 2.9882 4.6827

The figure 7-11 and 7-12 show the overall result of the CBDFI search algorithm

Fig 7-11: Fetch time of search Algorithm w.r.t. spatial-textual relevance

Fig 7-12 Fetch time of search algorithm w.r.t. to k

Alpha

SI-Tree(sec)

3
I3- tree(s)

hs_I tree(s

2

1

8

7

6

10 8 6 4 2 0

0

1

2

I3- tree(s)

hs_I tree(s

3

SI-Tree(sec)

4

5

6

7

Fe
tc

h
 t

im
e

Fe

tc
h

 t
im

e

112 | P a g e

7.2 DISCUSSION

Combining Inverted index with hash table produce more accurate and efficient

index. The same two algorithm are combined and tested in the presented CBDFI model.

From the various experiment conducted on the dataset of aviation industry it can be tested

and verified that the combine model yield 23% faster result while searching the database

using index based on hashed inverted index. Another significant finding from the research

is the generation of hs code which produce a consolidated 7 bit hexadecimal code including

both latitude and longitude of any spatial objects. Comparing with the successor Geohash

,hs code is approximately 23% compressed and produce best result with considering equal

relevance of spatial and textual score. The CBDFI model produce most optimal result at k

= 5 and table 7-14 showcase the complete finding of the proposed model.

Table 7-14: Finding of the CBDFI Search algorithm

S.No Steps Conclusions Findings

1 Study the architecture of

column based database

CBDFI Model for

Search of spatial Data

in Column Database

 Designed for hetro-type spatial

data.

 Location Logical view is

optimized using HMM

2 Process location data Unique Hs Code  Hs code is 23.33 % compressed

then Geohash code

 Execution time is approximately

equal to Geohash.

 More the distance buffer better

results.

 Average time (3.45672 sec)

taken by hs code to cover 1 UTM

zone is better than geohash

3 Identify algorithm used to

index spatial data

Hy-S Indexer  The indexer work best in 8 GB

windows environment.

 Same Index can be used for

location as well as textual

keywords

 Indexer work optimal when the

113 | P a g e

hash table index in range of p

alpha{}

 The indexer start giving better

results when the number of

keywords are more than 20000,

approximately 17.768%

4 Define spatial search model

and design novel search

algorithm.

Hs-I tree based spatial

search algorithm
 Yield most optimal result at k =5

and equal spatial and textual

relevance.

 At equal relevance the proposed

search algorithm is average

26.544 % fast in executing

 Hs-I tree is 22.97% i3-tree and

31.92% faster the Si-Tree at

equal relevance

5 Compare performance

 of proposed search

algorithm

Pre-Fetch table and its

improving efficiency

with increasing

queries

 Minimum time is taken to render

pre-fetch table designed in

window with Monet db,

compared with postgre Sql and

Oracel 11g

 The proposed search query is

tested for a keyword based

search.

114 | P a g e

CHAPTER 8

CONCLUSION & FUTURE SCOPE

8.1 CONCLUSION

The similitude of Big-data and location aware data has evolved the concept of “Spatial

Big Data” (SBD). For the processing of the spatial big data, advancement in the conventional

technologies is a demand of the industry. Multiple different solution has been presented by

researchers globally to optimize the manipulation of SBD with various different kind of

database storage architecture. The presented CBDFI model is also one such contribution in the

field of spatial data processing to optimize the search seek time. The contemporary search

query handler i.e. “Top K” spatial keyword search query which provide efficient result for

batch processing, moving trajectory and distributed processing is used as the base search

engine for the current research. “CBDFI” model proposed a hybrid indexing algorithm which

can process both keyword and location simultaneously. This “Hy-S” indexer use a novel location

encoder which produce unique hs code for any inputted location. Hidden markov model is used

as the base mathematical structure to traverse among the different “hs code” and generate the

rule for traversing from one node to another of “Hs-I Quadtree”. The “hs encoder” produce a

group of 24 different location that can be processed simultaneously at the single node of the

“Hs-I Quadtree” hence reducing the search time of the spatial keyword. CBDFI model also

present Pre-Fetch table which is searched for the most frequent keywords and positive

keyword match in this list will make the time complexity of the algorithm of O(m) where m

is the size of the list.

The CBDFI model performance is based on the hybrid hash inverted indexer, hence

this indexer was compare with the other two indexer i.e. inverted index and hash table on

various different operating systems and the hash inverted index produced 7.5 % improvement

from the contemporary inverted index for Windows I3 5th gen, 8 GB system. Bloom filter is

another contemporary hash table used for searching keywords from queries but it work only

on textual keyword whereas presented hash inverted work on both location and textual

115 | P a g e

keyword.

The Prefetch table was deployed on various databases such as PostGreSQL, Oracle

11g and MonetDB. Hence, Prefetch designed for CBDFI model on MonetDB produce 23.11

% better results than Oracle 11g and 37.4 % better result than PostGreSQL for 73 keywords.

The CBDFI model compared with three different spatial search model i.e. IL-Quadtree

Topk-Sk, S2I-Quadtree Topk-SK and I3-Quadtree Topk-Sk and two major drawback were

identified. Firstly the search engine use two different indexer for location and textual keywords

where as CBDFI model can use the same Hy-S indexer for both textual and location keywords

simultaneously. Secondly the search engine use Degree decimal and DMS format for location

information where as CBDFI model use hs code.

The CBDFI model search algorithm was compared with S2I-Quadtree and I3-Quadtree

and it was identified that model run best for value of alpha .5 i.e. equal spatial and textual

relevance and for the value of k= 5 in Top k query.

The CBDFI model introduce hs code and unique location code and datatype for Monet

db. Hence hs code is 23.33 % compress then Geohash codes. More the distance to cover the

better result are showcased by hs code and an average time of 3.45672 second is taken to cover

one UTM zone

The CBDFI Model is approximately 26.544 % faster in execution and 22.97% faster

than I3-Quadtree and 31.92 % faster than S2I-Quadtree. The model showcase approximately

17.768 % improvement in result as the keyword increase more than 20000.

The presented research can be used in various different application area such as

resource planning, social media surveillance, travel planning, crime investigation, and

trajectory monitoring and cyber threats. With the use of hs code the storage cost as well as

processing time for spatial data can be improved and can produce better location aware service

for Industry 4.0

116 | P a g e

8.2 FUTURE SCOPE

The presented framework has been designed around Column database architecture

but it might provide better result while working with graph database. The presented

research can be extended to produce location tool based on hs code which can be

fabricated in a hardware using universal gates and Boolean algebra. And with the

advancement of artificial neural network, the proposed transition matric may produce

better results if concepts of Artificial Intelligence is used.

117 | P a g e

REFERENCES

Abramova, V., Bernardino, J.j & Furtado, P.(2014). Which NoSQL database?.

A performance overview. Open Journal of database (OJDB), 1(2), 17-

24.

Alvares, L. O., Bogorny, V., Kuijpers, B., de Macedo, J. A. F., Moelans, B., &

Vaisman, A. (2007). A model for enriching trajectories with semantic

geographical information. Proceedings of the 15th Annual ACM

International Symposium on Advances in Geographic Information

Systems - GIS ’07. doi:10.1145/1341012.1341041

A.Cary, O. Wolfson, and N. Rishe, “Efficient and scalable method for

processing top-k spatial boolean queries,” in SSDBM, 2010, pp. 87–95.

Doi: 10.1007/978-3-642-13818-8_8

Khodaei, C. Shahabi, and C. Li. Hybrid indexing and seamless ranking of spatial

and textual features of web documents. In DEXA (1), pages 450– 466,

2010. Doi: 10.1007/978-3-642-15364-8_37

Barewar, A., Radke, M. A., & Deshpande, U. A. (2014). Geo skip list data

structure - storing spatial data and efficient search of geographical

locations. 2014 International Conference on Advances in Computing,

Communications and Informatics (ICACCI).

doi:10.1109/icacci.2014.6968370

Barowy. W. Daniel .et .al flashrelate(2015): Extracting relational Data from

Semi-structured spreadsheet using example. PLDI’15, June 13-17, 2015,

Portland, Or, USA, ACM978-1-4503-3468-6/15/06 doi:

10.1145/2813885.2737952

Bridget Freisthler, Bridgette Lery, Paul J. Gruenewald, and Julian Chow:

Methods and Challenges of Analyzing Spatial Data for Social Work

Problems: The Case of Examining Child Maltreatment Geographically,

118 | P a g e

doi 10.1093_swr_30.4.198

Bu, Y., Howe, B., Balazinska, M., & Ernst, M. D. (2010). HaLoop. Proceedings

of the VLDB Endowment, 3(1-2), 285–296.

doi:10.14778/1920841.1920881

Cao, X., Cong, G., Jensen, C.S.: Retrieving top-k prestige-based relevant spatial

Web objects. Proc. VLDB Endowment 3(1-2), 373–384 (2010)

Cao, X., Cong, G., Jensen, C. S., & Ooi, B. C. (2011). Collective spatial keyword

querying. Proceedings of the 2011 International Conference on

Management of Data - SIGMOD ’11. doi:10.1145/1989323.1989363

Chen, Y.-Y., Suel, T., & Markowetz, A. (2006). Efficient query processing in

geographic web search engines. Proceedings of the 2006 ACM SIGMOD

International Conference on Management of Data - SIGMOD ’06.

doi:10.1145/1142473.1142505

Christine Jardak, Petri Mähönen, and Janne Riihijärvi (2014): Spatial Big Data

and Wireless Networks: Experiences, Applications, and Research

Challenges, 0890-8044/14/$25.00 © 2014 IEEE, doi

10.1109_MNET.2014.6863128

Christoforaki, M., He, J., Dimopoulos, C., Markowetz, A., Suel, T.: Text Vs.

Space: Efficient Geo-Search Query Processing. In: Proceedings of the

20Th ACM International Conference on Informationand Knowledge

Management, pp. 423–432 (2011)

Chu, Xu, John Morcos, Ihab F. Ilyas, Mourad Ouzzani, Paolo Papotti, and Nan

Tang. (2015) “KATARA: A Data Cleaning System Powered by

Knowledge Bases and Crowdsourcing”, in Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data,

Melbourne, Victoria, Australia.

Cong, G., Jensen, C. S., & Wu, D. (2009). Efficient retrieval of the top-k most

relevant spatial web objects. Proceedings of the VLDB Endowment,

2(1), 337–348. doi:10.14778/1687627.1687666

119 | P a g e

Corbellini, A., Mateos, C., Zunino, A., Godoy, D., & Schiaffino, S. (2017).

Persisting big-data: The NoSQL landscape. Information Systems, 63, 1–

23. doi:10.1016/j.is.2016.07.009

Costes and J. Perret, “A hidden Markov model for matching spatial networks,”

Journal of Spatial Information Science, no. 18, Jun. 2019, doi:

10.5311/josis.2019.18.489.

C. Zhang, Y. Zhang, W. Zhang and X. Lin, "Inverted Linear Quadtree: Efficient

Top K Spatial Keyword Search," in IEEE Transactions on Knowledge

and Data Engineering, vol. 28, no. 7, pp. 1706-1721, 1 July 2016, doi:

10.1109/TKDE.2016.2530060.

Dean, J., Ghemawat, S.: Mapreduce: Simplified data processing on large

clusters. Communications of the ACM 51(1), 107–113 (2008)

De Felipe, I., Hristidis, V., & Rishe, N. (2008). Keyword Search on Spatial

Databases. 2008 IEEE 24th International Conference on Data

Engineering. doi:10.1109/icde.2008.4497474

Dong-Wan Choi , Chin-Wan Chung (2015): Nearest Neighborhood Search in

Spatial Databases, 978-1-4799-7964-6/15/$31.00 © 2015 IEEE, doi

10.1109_ICDE.2015.7113326

Doulkeridis, C., Nørvåg, K. A survey of large-scale analytical query processing

in MapReduce. The VLDB Journal 23, 355–380 (2014).

https://doi.org/10.1007/s00778-013-0319-9.

D. Papadias, P. Kalnis, J. Zhang, and Y. Tao. Efficient olap operations in spatial

data warehouses. In SSTD, pages 443–459, 2001.

D. Wu, M. L. Yiu, G. Cong, and C. S. Jensen, “Joint top k spatial keyword query

processing,” TKDE, 2011

D. Zhang, Y. M. Chee, A. Mondal, A. K. H. Tung, and M. Kitsuregawa.

Keyword search in spatial databases: Towards searching by document.

In ICDE, pages 688–699,2009.

120 | P a g e

D. Zhang, B. C. Ooi, and A. K. H. Tung. Locating mapped resources in web 2.0.

In ICDE, pages 521–532, 2010.

D. Zhang, K.-L. Tan, and A. K. H. Tung, “Scalable top-k spatial keyword

search,” in EDBT, 2013, pp. 359–370

Eskandari L, Huang Z, Eyers D (2016) P-Scheduler: adaptive hierarchical

scheduling in apache storm.In: Proceedings of the Australasian

Computer Science Week Multi -conference , ACSW 2016, No. 26. ACM

Press, New York

Finkel, R. A., & Bentley, J. L. (1974). Quad trees a data structure for retrieval

on composite keys. Acta Informatica, 4(1), 1–9.

doi:10.1007/bf00288933

Georgiou, H., Pelekis, N., Sideridis, S., Scarlatti, D., & Theodoridis, Y. (2019).

Semantic-aware aircraft trajectory prediction using flight plans.

International Journal of Data Science and Analytics.

doi:10.1007/s41060-019-00182-4

Ghemawat, S., Gobioff, H., Leung, S.: The google file system. In: ACM

SIGOPS Operating Systems Review, vol. 37, pp. 29–43. ACM (2003)

Giannotti, F., Nanni, M., Pinelli, F., Pedreschi, D.: Trajectory Pattern Mining.

In: SIGKDD, pp. 330–339 (2007)

Gregory Giuliani, Nicolas Ray, Anthony Lehmann(2011): Grid-enabled Spatial

Data Infrastructure for environmental sciences: Challenges and

opportunities, Future Generation Computer Systems 27 (2011) 292–303

Griffith, D. A., Fischer, M. M., & LeSage, J. (2016). The spatial autocorrelation

problem in spatial interaction modelling: a comparison of two common

solutions. Letters in Spatial and Resource Sciences, 10(1), 75–86.

doi:10.1007/s12076-016-0172-8

Guan, X., & Chen, C. (2014). Using social media data to understand and assess

disasters. Natural Hazards, 74(2), 837–850. doi: 10.1007/s11069-014-

121 | P a g e

1217-1

Guo, L., Shao, J., Aung, H. H., & Tan, K.-L. (2014). Efficient continuous top-k

spatial keyword queries on road networks. GeoInformatica, 19(1), 29–

60. doi:10.1007/s10707-014-0204-8

H.-J. Hong, G.-M. Chiu, and W.-Y. Tsai, “A single quadtree-based algorithm

for top-k spatial keyword query,” Pervasive and Mobile Computing, vol.

42, pp. 93–107, Dec. 2017

Karnitis, G., & Arnicans, G. (2015). Migration of Relational Database to

Document-Oriented Database: Structure Denormalization and Data

Transformation. 2015 7th International Conference on Computational

Intelligence, Communication Systems and Networks.

doi:10.1109/cicsyn.2015.30

Khayyat, Zuhair, Ihab F. Ilyas, Alekh Jindal, Samuel Madden, Mourad Ouzzani,

and Paolo Papotti. (2015) “BigDansing: A System for Big Data

Cleansing”, in Proceedings of the 2015 ACM SIGMOD International

Conference on Management of Data, Melbourne, Victoria, Australia.

Kyu-Young Whang , Jae-Gil Lee , Min-Soo Kim, Min-Jae Lee ,Ki-Hoon Lee

,Wook-Shin Han ,Jun-Sung Kim(2010): Tightly-coupled spatial database

features in the Odysseus/OpenGIS DBMS for high- performance,

Geoinformatica (2010) 14:425–446 DOI 10.1007/s10707-009-0086-3

K. V. R. Kanth, S. Ravada, and D. Abugov. Quadtree and r-tree indexes in oracle

spatial: a comparison using gis data. In SIGMOD Conference, pages

546–557, 2002.

Lee, J.-G., & Kang, M. (2015). Geospatial Big Data: Challenges and

Opportunities. Big Data Research, 2(2), 74–

81.doi:10.1016/j.bdr.2015.01.003

Li, Z., Lee, K. C. K., Zheng, B., Lee, W.-C., Lee, D., & Wang, X. (2011). IR-

Tree: An Efficient Index for Geographic Document Search. IEEE

122 | P a g e

Transactions on Knowledge and Data Engineering, 23(4), 585–599.

doi:10.1109/tkde.2010.149

Li, Y. Li, and M. L. Yiu, “A Spatial Insight for UGC Apps: Fast Similarity

Search on Keyword-Induced Point Groups,” in 2019 20th IEEE

International Conference on Mobile Data Management (MDM), 2019

doi: 10.1109/MDM.2019.00-26

Liu, F., Yu, C., Meng, W., & Chowdhury, A. (2006). Effective keyword search

in relational databases. Proceedings of the 2006 ACM SIGMOD

International Conference on Management of Data - SIGMOD ’06.

doi:10.1145/1142473.1142536

Liu Hua, Li De-ren, ZHU Xin-yan(2005): Large volume spatial Data

management based on Grid computing IEEE 2005, 0-7803-9050-

4/05/$20.00

Liu Xiaosheng, Huang Xiaobin, Zhoa Zhiyong(2008): Research on spatial

Database Model in Grid environment : The international archive of

photogrammetry, Remote Sensing and Spatial Information Science Vol.

XXXVII part B4 Beijing 2008

LIU, Z., GUO, H., & WANG, C. (2016). Considerations on Geospatial Big Data.

IOP Conference Series: Earth and Environmental Science, 46, 012058.

doi:10.1088/1755-1315/46/1/012058

Low, Y., Gonzalez, J., Kyrola, A., Bickson, D.,Guestrin, C., Hellerstein, J.M.:

Graphlab: A new framework for parallel machine learning. arXiv

preprint arXiv:1006.4990 (2010)

Ls Carlo Strozzi, NoSQL Relational Database Management System: Home

Page, URL http://www.strozzi.it/cgibin/CSA/tw7/I/en_US/nosql/Home-

Page, 1998 (accessed 05.07.13).

Lu, J., Lu, Y., Cong, G.: Reverse Spatial and Textual K Nearest Neighbor

Search. In: SIGMOD (2011)

http://www.strozzi.it/cgibin/CSA/tw7/I/en_US/nosql/Home-

123 | P a g e

L.M. Ainsworth, C.B. Dean, and R. Joy: Zero-Inflated Spatial Models:

Application and Interpretation, DOI 10.1007/978-3-319-31260-6_3

Malewicz, G., Austern, M., Bik, A., Dehnert, J., Horn, I., Leiser, N.,

Czajkowski, G.: Pregel: a system for largescale graph processing. In:

Proceedings of the 2010 international conference on Management of

data, pp. 135–146.ACM (2010)

Markus Törmä, Pekka Härmä, Elise Järvenpää(2007) , Change Detection using

Spatial Data:Problems and Challenges, 1-4244-1212-9/07/$25.00

©2007 IEEE. doi 10.1109_IGARSS.2007.4423208

Mohan, C. (2013). History repeat itself : Sensible and NonsenSQL aspectof the

NoSQL hoopla. EDBT/ICDT 2013 Joint conference, March 18-22,

2013, Genoa Italy, ISBN: 978-1-4503-1597-5

Muhammad Hanis Rashidan, Ivin Amri Musliman(2015): GeoPackage as Future

Ubiquitous GIS Data Format: A Review 73:5 (2015) 47–53 | eISSN

2180–3722 |

Murray, D.G., Schwarzkopf, M., Smowton, C., Smith, S., Madhavapeddy, A.,

Hand, S.: Ciel: a universal execution engine for distributed data-flow

computing. In: Proceedings of the 8th USENIX conference on

M. Christoforaki, J. He, C. Dimopoulos, A. Markowetz, and T. Suel. Text vs.

space: efficient geo-search query processing. In CIKM, pages 423–432,

2011

Nguyen, T., Larsen, M. E., O’Dea, B., Nguyen, D. T., Yearwood, J., Phung, D.,

… Christensen, H. (2017). Kernel-based features for predicting population

health indices from geocoded social media data. Decision Support

Systems, 102, 22–31. doi:10.1016/j.dss.2017.06.010

Ningyu Zhang, Guozhou Zheng, Huajun Chen (2014): HBaseSpatial: a Scalable

Spatial Data Storage Based on HBase, 2014 IEEE 13th International

Conference on Trust, Security and Privacy in Computing and

124 | P a g e

Communications, 978-1-4799-6513-7/14 $31.00 © 2014 IEEE, DOI

10.1109/TrustCom.2014.83

Peter A. Johnson (2016): Models of direct editing of government spatial data:

challenges and constraints to the acceptance of contributed data,

Cartography and Geographic Information Science, DOI:

10.1080/15230406.2016.1176536.

Ridzuan, F., & Wan Zainon, W. M. N. (2019). A Review on Data Cleansing

Methods for Big Data. Procedia Computer Science, 161, 731–738.

doi:10.1016/j.procs.2019.11.177

Rigaux P, Scholl M, Voisard A (2002) 6 - spatial access methods.In: Spatial

Databases, Morgan Kaufmann, San Francisco, pp 201–266, DOI

http://dx.doi.org/10.1016/B978-155860588-6/50008-7, URL

http://www.sciencedirect.com/science/article/pii/B97815586058865000

87

Robert. T. Mason(2015) NoSQL database and Data Modeling Technique for a

document oriented NoSQL Database. Proceeding of informing science

& IT education conference (InSITE) 2015, 259-268 doi: 10.28945/2245

Rocha-Junior, J. B., Gkorgkas, O., Jonassen, S., & Nørvåg, K. (2011). Efficient

Processing of Top-k Spatial Keyword Queries. Lecture Notes in

Computer Science, 205–222. doi:10.1007/978-3-642-22922-0_13

Ruiz-Medina, M. D. (2012). New challenges in spatial and spatiotemporal

functional statistics for high-dimensional data. Spatial Statistics, 1, 82–

91. doi:10.1016/j.spasta.2012.02.006

R. A. Baeza-Yates and B. A. Ribeiro-Neto. Modern Information Retrieval. ACM

Press / Addison-Wesley, 1999.

R. Hariharan, B. Hore, C. Li and S. Mehrotra, "Processing Spatial-Keyword

(SK) Queries in Geographic Information Retrieval (GIR) Systems," 19th

International Conference on Scientific and Statistical Database

Management (SSDBM 2007), 2007, pp. 16-16, doi:

125 | P a g e

10.1109/SSDBM.2007.22.

R. Prakhyath, M. Vijaya(2015): Transforming digital unstructured and semi

structured data into structured data with aid of IE and KDT international

Journal in Research in Computer and Communication technology Vol4,

Schade (2015) : BIG DATA BREAKING BARRIERS – FIRST STEPS ON A

LONG TRAIL, The International Archives of the Photogrammetry,

Remote Sensing and Spatial Information Sciences, Volume XL-7/W3,

36th International Symposium on Remote Sensing of Environment, 11–

15 May 2015, Berlin, Germany DOI:10.5194/isprsarchives-XL-7-W3-

691-2015

Seung Kyoon Shin, G. Lawrence Sanders (2006): Denormalization strategies for

data retrieval from data warehouses, Decision Support Systems 42

(2006) 267– 282, doi 10.1016_j.dss.2004.12.004

Singh, B. & Srivastava, K. & Gupta, D.. Future prospects and challenges in

geospatial database for handling of big data concept: A review.

International Journal of Recent Technology and Engineering. 7. 140-

144. April 2019

Song, W. & Jin, B. & Shihua, Li & Wei, X. & Li, D. & Hu, Fei. (2015).

BUILDING SPATIOTEMPORAL CLOUD PLATFORM FOR

SUPPORTING GIS APPLICATION. ISPRS Annals of

Photogrammetry, Remote Sensing and Spatial Information Sciences. II-

4/W2. 55-62. 10.5194/isprsannals-II-4-W2-55-2015.

Song, Z., Chen, J., & Ye, J. Y. (2014). A Mobile Storage System for Massive

Spatial Data. Advanced Materials Research, 962-965, 2730–2734.

doi:10.4028/www.scientific.net/amr.962-965.2730

Srivastava, K., Sridhar, P.S.V.S. and Dehwal, A. 'Data integration challenges

and solutions: a study', International Journal of Advanced Research in

Computer Science and Software Engineering, Vol. 2, No. 7, July 2012

Storey, V. C., & Song, I.-Y. (2017). Big data technologies and Management:

http://www.scientific.net/amr.962-965.2730
http://www.scientific.net/amr.962-965.2730
http://www.scientific.net/amr.962-965.2730

126 | P a g e

What conceptual modeling can do. Data & Knowledge Engineering, 108,

50–67.doi:10.1016/j.datak.2017.01.001

Storey, Veda & Chiang, Roger & Goldstein, Robert & Dey, Debabrata. (1997).

Database Design with Common Sense Business Reasoning and

Learning. ACM Trans. Database Syst. Doi: 22. 10.1145/278245.278246.

Sun, D., Yan, H., Gao, S., Liu, X., & Buyya, R. (2017). Rethinking elastic online

scheduling of big data streaming applications over high-velocity

continuous data streams. The Journal of Supercomputing, 74(2), 615–

636. doi:10.1007/s11227-017-2151-2

Tsung-Hao Chen , Cheng-Wu Chen(2010): Application of data mining to the

spatial heterogeneity of foreclosed mortgages, Expert Systems with

Applications 37 (2010) 993–997, doi 10.1016_j.eswa.2009.05.076

Verena Kantere, Spiros Skiadopoulos, and Timos Sellis(2008): Storing and

Indexing Spatial Data in P2P Systems, 1041-4347/09/$25.00 _ 2009

IEEE, DOI 10.1109_tkde.2008.139]

Wang, Hongzhi, Mingda Li, Yingyi Bu, Jianzhong Li, Hong Gao, and Jiacheng

Zhang. (2015) “Cleanix: a Parallel Big Data Cleaning System.” ACM

SIGMOD Record 44 (4): 35-40. Doi: 10.1145/2935694.2935702

Yan, Z., Chakraborty, D., Parent, C., Spaccapietra, S., & Aberer, K. (2011).

SeMiTri. Proceedings of the 14th International Conference on Extending

Database Technology - EDBT/ICDT ’11.

doi:10.1145/1951365.1951398

Yakout, M., Berti-Équille, L., & Elmagarmid, A. K. (2013). Don’t be SCAREd.

Proceedings of the 2013 International Conference on Management of

Data - SIGMOD ’13. doi:10.1145/2463676.2463706

Ye, D. (2008). The evolution of geographic information systems from my view.

Geoinformatics 2008 and Joint Conference on GIS and Built

Environment: The Built Environment and Its Dynamics.

doi:10.1117/12.812823

127 | P a g e

Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art

and research challenges. Journal of Internet Services and Applications,

1(1), 7–18. doi:10.1007/s13174-010-0007-6

Zhang, Y., Gao, Q., Gao, L., & Wang, C. (2011). PrIter. Proceedings of the 2nd

ACM Symposium on Cloud Computing - SOCC ’11.

doi:10.1145/2038916.2038929

Zheng, K., Gu, D., Fang, F., Zhang, M., Zheng, K., & Li, Q. (2017). Data storage

optimization strategy in distributed column-oriented database by

considering spatial adjacency. Cluster Computing, 20(4), 2833–2844.

doi:10.1007/s10586-017-1081-3

Zhou, Y., Xie, X., Wang, C., Gong, Y., & Ma, W.-Y. (2005). Hybrid index

structures for location-based web search. Proceedings of the 14th ACM

International Conference on Information and Knowledge Management -

CIKM ’05. doi:10.1145/1099554.1099584

Zhang, N., Zheng, G., Chen, H., Chen, J., & Chen, X. (2014). HBaseSpatial: A

Scalable Spatial Data Storage Based on HBase. 2014 IEEE 13th

International Conference on Trust, Security and Privacy in Computing

and Communications. doi:10.1109/trustcom.2014.83

128 | P a g e

APPENDIX: A

WORKS PUBLISHED/PRESENTED/ACCEPTED FOR PUBLICATION BASED ON

THE CURRENT RESEARCH

Published:

[1] Paper 1: Singh, B. & Srivastava, K. & Gupta, D.. (2019). Future prospects

and challenges in geospatial database for handling of big data concept: A review.

International Journal of Recent Technology and Engineering. 7. 140-144.

Weblink: https://www.ijrte.org/download/volume-7-issue-6c/

[2] Paper 2: Singh, B. & Srivastava, K. & Gupta, D.. (2020). Unique indexing

model in Geospatial database Paradigm. Indian Journal of Computer Science and

Engineering (IJCSE) Vol. 11 No. 2 Mar-Apr 2020 (204-216), e-ISSN : 0976-5166,

p-ISSN : 2231-3850. DOI : 10.21817/indjcse/2020/v11i2/201102166

Weblink: https://www.ijcse.com/ijcse-issue.html?issue=20201102

https://www.ijrte.org/download/volume-7-issue-6c/
https://www.ijcse.com/ijcse-issue.html?issue=20201102

