CHAPTER 4

METHODOLOGY

In earlier days, wind tunnels were the only tool for aerodynamic shape testing and
design. In wind tunnels a parts of an aircraft or a complete aircraft or a scaled
model is tested using force and pressure measuring equipment and modified as
per design requirements. But wind tunnels are very costly and data fetching is
time consuming. Nowadays Computational Fluid Dynamics (CFD) has emerged
as a vital tool for aerodynamic design and shape optimization and is widely used
in various spectrums of aerodynamic applications. Due to improvement in
numerical algorithms and the rapid increase in computer speed and memory, the
use of CFD has grown leaps and bounds as approximate results very close to
actual values are readily obtained. As this research focuses on the minute
geometric variations of the Busemann biplane and similar variations of Mach
numbers, CFD has been used as the tool of experimentation. Fabrication of a large
number of staggered and non-staggered biplanes for wind tunnel testing would
have been quite expensive, while general academic supersonic tunnels operate at
single Mach number. This makes the wind tunnel experiments unwarranted for
this particular case where a large number of geometries are investigated at about
15 different Mach numbers. The CFD provides the inexpensive solution which

order of accuracy for the selected Mach numbers.

4.1 Introduction to CFD

Computational Fluid Dynamics (CFD) plays an important tool for analyzing fluid
dynamic problems through the solution of non-linear governing equations of fluid
flows using numerical methods and algorithms. Computational Fluid Dynamics

provides reasonably accurate solutions within the realm of approximate solution
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and the results can be used for preliminary design and further integrated into the
design along with validation studies. The steps involved in the analysis of a fluid
dynamic problem using CFD includes following steps:

e Creation of geometry of the domain of interest for a problem.

¢ Division of the domain into smaller subdomains.

¢ Definition of the physical model to be used i.e. equations of motions.

e Definition of the boundary conditions, fluid behavior and the properties of

the fluid.
e Solution of the governing equations through an iterative solver.

e Post Processing or the result analysis and flow visualization.

Different discretization approaches are used these days for CFD applications.
There are in general three popular discretization schemes viz. finite difference
(FD), finite volume (FV), and finite element method (FE). The oldest method of
the three is the finite difference method for numerical solution of the partial
differential equations. Such methods usually need structured grids, serving as
local coordinate’s lines. The Finite Volume method on the other hand, uses the
integral form of the conservation equations, and the whole domain is divided into
many sub-domains, i.e. control volumes. Conservation equations are applied to
each control volume, and the node lies in the centre or the vertex of the cell where
the variables are stored. The Finite volume method is suitable for complex
geometries, which means it does not have restrictions on grid types. The
disadvantage of this method is that higher order schemes are more difficult to
implement in three dimensional cases. The Finite element method, as the third
type of method, is similar to the Finite volume method. The physical domain is
also reconstructed by discrete volumes (i.e. finite elements) that are generally
unstructured. One of the important advantages is the ability to deal with arbitrary
geometries. The Finite element method usually uses the unstructured mesh and
the principle drawback is that the matrices of the linearized equations are not as

well structured as those for structured grids. Therefore, it might have lower
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efficiency. [44]

In general, the Finite difference method can be very effective and simple to
perform the higher-order schemes with regular grids. The Finite element method
has an ability to deal with arbitrary geometries and unstructured grid is usually
used. The Finite volume method is the simpler to understand and program as
compared to the finite element methods and similar to finite difference methods
for structured grids. The Finite volume methods can be used for any type of grids,
which is why it is popular for commercial CFD codes. This is the method used for
the investigation in this thesis.

The control volume (i.e. the approach for FV method) deals with the flow in a
certain spatial region. Fig. 4.1 shows the control volume and the typical notation
used for two dimensional grids: a) vertex-centre based, b) cell-centre based. In the
solver used in this work, the value of primitive and flux variables are stored at the
cell centre [44]. For any conserved intensive property (i.e. mass, momentum, and
energy) the integral form of the conservation equations for the numerical solution

can be written as given by equation 4.1.
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The above equation represents that the rate of change of the amount of property in
the control volume is the rate of change of the property within the control volume
plus the net flux of it through the control volume boundary due to the fluid motion
relative to the control boundary. In Eq.4.1 the term 012, dS denotes the boundaries
of a control volume and a surface element, respectively, and 7 is outward going
unit normal. The term U represents the column vector of unknown primitive or

flux variables. In Equation 4.1, FC and FD represents the convective and diffusive
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flux tensors respectively while the term @, stands for the local sources inside the

volume, and Qg means surface source tensor. [44]

i+1, j+1

1+1,J

a) Vertex-center b) Cell-center

Fig.4.1: Schematic of two-dimensional control volumes grids [44]
4.2 Governing equations

The equation of the fluid dynamics is the well-known Navier-Stokes equations
that come directly from the conservation laws of mass, momentum, and energy.
The integral form of the mass, momentum conservation equation follows directly
from the general equation (Eq. 4.1).

For continuity, Eq. 4.1 can be rearranged into:

0 .. (4.2)
—f de+j§p(v-n)dS=0
at Jg o0

The first term in Eq. 4.1 represents the time rate of increase in total mass inside
the finite control volume {2, and the second term denotes the net mass flow out of
the control volume, and the positive mass flow corresponds to outflow and
negative to inflow. By applying the Gauss’s divergence theorem to the convection
term, the surface integral can be written into a volume integral, therefore, Eq. 4.1

can be written into the differential form:
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d 4.3
a—€+ div (pv) =0 (4.3)

For a given coordinate system, Eq. 4.3 can be expressed using the divergence

operator into the particular coordinate system. Hence, as an example, the Eq. 4.3

can be reformulated into the Cartesian coordinate system:
0 d(pu d(pv d(pw 4.4
op  0lpw) 9(pv)  9(pw) (4.4)

0
at 0x dy 0z

where u,v,and w in Eq. 4.4 denote as the velocity components in x, y, and z
direction.
The equations for the momentum, consistent with the generic integral form of Eq.

4.1 can be given by equation 4.5.

2 v+ §pF FR)dS=] p f,d2—fpiidS+ {(Tﬁ)dS (4.5)
o s 0 s s

The left hand side of Eq. 4.5 represents the time rate changing of momentum due
to the unsteadiness of the flow properties inside the control volume, and the
second term means the net flow of momentum out of the control volume across

the surface S. The term | p fedS) in above equation represents the body forces,
Q

while the second, third terms are the sum of pressure forces, and the viscous
forces acting on the flow as it across the control surfaces respectively. The surface
forces are the forces which act due surface contact such as pressure, normal and
shear stress, surface tension, etc. while the body forces are forces such like
gravity, centrifugal, and Coriolis forces, and electromagnetic forces which act

from a distance.

The energy equation is the statement the first law of thermodynamics applied to a
finite control volume of fluid. The first law of thermodynamics states, “the time
rate of change in the total energy inside a control volume is the sum of the rate of

work done by surface and body forces acting on the control volume and rate of
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heat addition into it’. For a thermally perfect gas under equilibrium conditions,
the total specific energy at any point in the control volume of a fluid is the sum its
specific internal energy and its specific kinetic energy, and can be written as Eq.

4.6.

& u2+v2+w2

E=et+—=et+—— 4.6
5 5 (4.6)

The time rate of change of the energy flux pF, within a finite control volume {2

due to flow unsteadiness can be given by Eq. 4.7.
2 [ pEdQ (4.7)
at-’Q P ’

The flux of total energy through the control surfaces of the domain occurs due to
both the diffusive and convective phenomena. The diffusion of thermal energy,
called as conduction is directly proportional to the temperature gradient in the

flowfield and is given by Fourier’s Law as written as Eq. 4.8.

-

Fp=—kVT (4.8)
where k is the local thermal conductivity of the fluid.

Another means of heat addition to the control volume are the internal sources like
the chemical reactions, radiation, irradiation or electrical sources of heating. The
volumetric heating rate ¢, due to heat sources and the work done by body forces
per unit time can be combined as total contribution from volumetric sources and

given as
Qv =ple-V+dn (4.9)
In Eq. 4.9 E, is the body force vector acting per unit mass of the fluid volume.

The contributions from the work done, per unit time, by the surface forces viz. the
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pressure and viscous stresses account for a major component of the energy

conservation and is given by Eq. 4.10.

all

Qs =—pv+1T.7 (4.10)

where T represents the viscous stress tensor. Combining the heat fluxes from all
the sources and the rate of work done by all the forces, the energy equation can be

written as Eq. 4.11

aﬁj pEAQ+ § pl(Fii)dS = § k(V1ii)dS + §(pje.v+qh}/§z— § p(p.ii)dsS
e dQ o0 0 dQ

+d§2 [;}ﬁdS @.11)

4.5 Navier-Stokes Equation: Vector-variable form

For the numerical solution of the fluid flows it is convenient to arrange all the
equations in vector-variable form. The vector integral form of governing equation,

with convective and viscous flux vectors split out can be written as Eq. 4.12.

o[ L q (4.12)
—f WdQ+9€ (FC—F,,)dS=f Q dQ
at Jq s Q

where the vector of the conserved variables, and the fluxes are listed as follows:

r V] I 0
ol (4.13)
- pI’lV+nxp nxTxx +nyTxy +nszz
W=\ pv , }_7;2 puV+n.p|, F,=\nt, +n7, +n7,
pW leV+nzp nxsz +nysz +nszz
| PE ] . pHV nO, +n0, +n0,

The contravariant velocity, U, in Eq. 4.13 is expressed as following:
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-
V=v-n=un,+vn, +wn,

The elements of the shear stress tensor as proved by Stokes can be given by

equation 4.14.

2 ou &v ém
ty =i 2~
© 3 & oy &
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T, =fx=“{.——ﬁ— (4.14)
L ey

4.6 Turbulence and transitional models

The three dimensional flows are highly unsteady and most of them are turbulent.
In turbulent flow, the fundamental flow properties fluctuates and this makes the
numerical simulation very difficult. Although the smallest of fluctuations can be
simulated through the solution of unsteady Navier Stokes equations, it requires
infinitesimally small distance between the nodes and also infinitesimally small
time step for unsteady computations. The computational power requirements for
these so called Direct Numerical Simulations are so large that such simulations
cannot be performed for any practical aerodynamic problems even with the most
efficient computers on the planet. Resolving only the large scale turbulence with
Large Eddy Simulations (LES) is slightly less computationally expensive but still
out of reach for large number of design modifications. The RANS and URANS
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(i.e. Unsteady/Reynolds-averaged Navier-Stokes) methods, where the turbulent
stresses are modeled with approximate formulations provide reasonably good
results for turbulent flows and are computationally cheaper. The RANS method is

based on the time averaging of flux variables and the flow is statistically steady.

4.6.1 Turbulence equations

The unsteady Navier-Stokes equations as written in Equation 4.15 in vector

notation are capable of resolving all scales of turbulence.

5_ﬂ+_5 ‘r'):[]
o &

) o) op Ot
E(ﬂ"f)‘*ﬁ—[ﬂ",.-’*'.-):_;—ﬁ‘:’ 5{; (4.15)
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In Eq. 4.15, the subscript i represents a component in i-direction while subscript
on derivative represents summation through all three directions. The viscous

stress tensor 7, is a second order tensor of velocity gradients wherein each

element is given as follows

ov ov
z‘..zZ,uS..Jri—ké..:Z,uS..— 2 k.
Y i 8xk Y y o\ 3 8xk Y

In above equation, J;; is the kronecker delta operator which has non zero values

only when 7=j and the strain-rate tensor are given by

i J

) v ov .

S..
y 2l ox. Ox.
Jj i
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and the rotation-rate tensor is given by

ov .
1 wi J

i 2| ox. ox
_] 7

In Eq. 4.15, the total energy £ and the total enthalpy H are respectively given by

the following expressions

E:e+%vl.vi, H:h+lvivl.

4.4.2 Reynolds Averaging

Understanding turbulent flows has been one of the most challenging problems
faced by physicist and engineers of the 20™ century. A method to accommodate
the effects of turbulence on the flow characteristic was suggested by Reynolds in
1895 and it still finds applicability in numerous engineering applications. For
turbulent flows, the primitive flow variables are decomposed into two
components wherein the first part is a mean value of the variable over a small
interval of time and the second part is the fluctuation of the variable as written in

Eq. 4.16.
V.=V +V p=p+p (4.16)

The mean values in Eq. 4.16 can be obtained through one the following averaging

procedures.

i.  Time averaging

‘—)lzl 1 r+171

Myl @17

In time averaging, the mean value of v, does not vary in time, but only in space as

shown in Fig. 42. In Eq. 4.17, T — o represents a time interval that is large as
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compared to the time scale of the turbulent fluctuations. This averaging is useful

for estimating steady state turbulence.

ii.  Spatial averaging
v, = hm L Ide (4.18)
i Q-0 QQ i .

In spatial averaging the variables are averaged over a control volume such that the

mean value V,is uniform in space, but may change with time. This averaging is

useful for computing homogenous turbulence.

4
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Fig. 4.2: Fluctuations of velocity over time in a turbulent flow

iii. Ensemble averaging
. 1
v, =lm, NZVI. (4.19)

In ensemble averaging, the mean value v, averaged both over space and time and
is appropriate for modeling general turbulence. In all of the above averaging
methods, the mean of the fluctuating component is zero, i.e. \7,./ =0, however, the
mean of the product of the fluctuations of two components is non-zero, i.e.

vy, #0.
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4.4.3 Favre (Mass) — Averaging

In compressible flows wherein density is highly variable, the Reynolds averaging
does not provide high fidelity computation of turbulence effects as in Reynolds
averaging of variables an additional correlation for density fluctuations are
required which complicates the computations. To alleviate this, a common
practice is to perform mass weighted averaging of the certain flow variables.
Generally the Reynolds averaging is implemented for density and pressure, while
the mass (Favre) averaging is preferred for variables like velocity, enthalpy and

temperature. Mass averaging of a flowfield variable can be written as Eq. 4.20.

- 1. 1 prr
v, =—Im re ), pv.dt (4.20)

i —

o)

where p denotes the Reynolds-averaged density. Thus for the mass averaged

decomposition a variable can be given as

v, =V +v/ (4.21)

As with Reynolds averaging, the average of the fluctuating part is zeroi.e. v' =0

and the average of the product of the two fluctuating quantities is not zero, if the

quantities are correlated.

4.4.4 Favre and Reynolds Averaged Navier-Stokes Equations

Often in turbulence modeling, it assumed that Morkovin’s hypothesis is valid
which says, “the turbulent structure of a boundary layer is not notably influenced
by density fluctuations if p’ << ;_)”. The Morkovin’s hypothesis is holds true for
wall-bounded subsonic and supersonic flows. However, for hypersonic flows or
the free shear layers in compressible flows, the density fluctuations are taken into
account.

Reynolds averaging of the variable like density and pressure, and the Favre

averaging to the remaining flow variables in the compressible Navier-Stokes
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equations yields the so called Reynolds averaged Navier-Stokes equations as

given in Eq. 4.22.

%2 (50
o ox,
L)+ )=— L L (422)
ji . g L

In Eq. 4.22, the viscous stress tensors in the momentum and energy equations are

replaced by the Favre-averaged Reynolds-stress tensor, i.e.

Similarly the Favre-averaged turbulent kinetic energy is given by

o 1_
pK ==pvv,

and the total energy can be expressed thereafter as

I

— I _o 1 1
plz pe+2pvlvl+2pv v, —pe+2pvlvl+pK

Finally, the total enthalpy is defined as

pH = ph+;pvv+;pv// ! 5}7+%5’W+512

In the Favre and Reynolds-averaged Navier-Stokes Eq. 4.22, the term

e e represents conduction of heat, the term —(p "n' ) represents the
8x ox ox

J J

0

transport of specific enthalpy due turbulence, the term a—(rl]vl ) represents
X
7
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molecular diffusion of the turbulent kinetic energy K, the term ai(pv;/ K)
X .
J

o ~ 0 (o~
represents turbulent transport of the kinetic energy K, ?(vl. z'l.j) represents work
X

~

) cop 0
done by the viscous stresses due to molecular diffusion, ?(v;; ) represents
X]

work done by the Favre-averaged Reynolds stresses,

The molecular diffusion and turbulent transport of X are very often neglected for
the transonic and supersonic flows while these terms are significant for
hypersonic and high temperature flows.

There are various turbulence models that have been developed for approximation
of the effect of turbulence in the numerical simulation of engineering fluid flows.
The Spalart-Allamaras turbulence models are selected for this research project

and the details of the models are described in next section. [44]

4.6 Turbulent Modelling

Turbulence is the unsteady, irregular motion of fluid particle in which transported
quantities fluctuate in time and space. Turbulent modeling plays and important
role in the computation of high Reynolds’ number flows.

While performing the RANS simulation the turbulent models play an important
role for the detailed study for turbulent flows. The large scale turbulence is
produced due to the shock-boundary layer interaction and boundary layer
separation in the flowfield; hence the correct choice of the turbulence model is
necessary for the prediction of turbulence in the flowfield.

In the current research Spalart-Allmaras (S-A) turbulence model is used to predict
the turbulence in the flowfield. One equation model such as Spalart-Allmaras
model seems to be good compromise between algebraic and two equation models.
Spalart-Allmaras model directly solves the transport equation for the eddy

viscosity and has become very popular for reasonably correct results with lesser
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cost for aerodynamic flows. This model also provides good results for the
transport of turbulent flow in complex industrial configuration. [S5, 56, 57, 58,
59]

The transport equation for the modified turbulent viscosity, ¥ solved for the S-A

model is given by equation 4.23. ¥ [55].

W e Al B[ & o o (v
B Poe s 18 w)_]% Ly IRV (1) PP
& ‘& T g éx, &, &, =d

The eddy viscosity is then defined as:

We = pUfp1 = PVe
A damping factor f,,; is defined in order to ensure that ¥ = kyu, in the log layer
and viscous sub-layer as:

3 7

with y = =

flﬁ'l: E]
Xa 18 Cy1

The vorticity magnitude S is modified such that § maintain its log-layer behaves

< 7
3 = ZHIjﬂUfﬁ +mfvz

o _lfom 0w
Ty dx;  Ox;

which is accomplished with help of the function

X
=1 _—_—,
fvz 1 +va1

In order to obtain a faster decaying behavior of destruction in the outer region of

fv3 =1L

the boundary layer, a function f,, is used:

1/6 5

1+cg
go + ¢l

fw(@) = g(
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Both r and f,, are equal to 1 in log-layer and decreases in the outer layer.

Constants of the model are [55]:

2
cp1 =0.1355, cp = 0622, 0 =3, k=041

Cpi 1+ Cya
Cyl = T R Cw3 =03, Cuz= 2, and c¢,;; =0.71
4.8 Geometric Modelling and Grid Generation
4.6.1 Geometric Modelling
Geometric modelling is the mathematical description of different shapes is used

for engineering application for studying the different parameters. For the current

study the different airfoil geometries are used and are shown in Fig.4.3.

A

z=0.5¢

' ' < : :
Diamond airfoil Busemann biplane
oo | ‘ ey
7 ‘ -‘f;_ﬁ:ﬂf__—__x‘“"j—:
tfc=0.05 (_L o w
Staggered Biplane Biplane with Leading and

Trailing edge radius
Fig. 4.3: Basic geometries
where ¢ is the chord, #/c is thick to chord ratio, z is the distance between the

Busemann elements, ‘x’ is the stagger between the elements and ‘7’ is the radius
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of leading edge and trailing edge of the upper and lower elements. The values of

all the variables used for the current study is given in the Table 4.1.

4.6.2 Grid Generation

A grid is a small-sized geometrical shape that covers the physical domain, whose
objective 1s to identify the discrete volumes or elements where conservation
laws can be applied. Grid generation is the first process involved in
computing numerical solutions to the equations that describe a physical process.
The result of the solution depends upon the quality of grid. A well-constructed
grid can improve the quality of solution whereas, deviations from the numerical

solution can be observed with poorly constructed grid.

Table 4.1 values of the variables used in basic geometries.

Values
Chord (c) 1m
Thickness/chord (t/c) 10%
Distance between biplane elements (z) 50% ¢
Stagger Distance (x) 10% ¢, 20% c, 30% ¢, 40% ¢, 50% ¢
Radius of leading edge and trailing edge () 1mm, 2mm, 3mm, Smm

For the numerical solution of the governing equations of fluid flow, the flow
domain must be discretized i.e., divided into a number of cells or grid points
where the solution can be obtained. Numerical solutions are often represented as
discrete values of a quantity at the grid points, or as the average of the quantity

over one cell as shown in Fig. 4 4.

Fig. 4.4: Grid points and cell centers.
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The more closely packed the grid points are, the more is the accuracy of the
solution for a given algorithm and order of accuracy of the schemes. With finer
meshes however, the time steps for marching have to be very small which means
a larger computational time for same level of accuracy. Also with a large number
of cells or grid points, the computer memory requirements increase which
increases the computational time required for each iteration. This further delays
the solution procedure. For the finest of grids required for most accurate solutions
of real life engineering problems the computational capacities of even the modern
supercomputers are insufficient. So a compromise has to be exercised between
accuracy and the computational time requirements. Besides the fineness of the
grid another aspect of grid generation for discretization of a complex geometry, is

the choice of either structured or unstructured grids.

Unstructured grids: In unstructured grid generation, the domain is divided into
small polygons, quadrilaterals and often triangles as shown in Fig. 4.5. In the
computer data structure, each triangle has pointers to its neighbors and inform
about their connectivity and the triangles/quadrilaterals are numbered in a random
fashion. The coordinates of the vertices and the centroid of each polynomial are
however is stored in an array. Unstructured meshes are often associated with the
finite element discretization, but these are often used for finite volume techniques
as well by considering each cell as finite volume wherein the conservation laws

hold.

Fig. 4.5: Unstructured triangular mesh on a unit square
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The major advantages of the unstructured grids are that block decomposition is
not required for the parallel implementations and the refinement of the mesh is
also straightforward. The disadvantages of unstructured grid are that it is
inefficient on many computer architectures and getting an efficient parallelization

is not straightforward and the discretization formulas are often more complicated.

Structured grids: Structured grids are the ones wherein the grid points are
indexed in a regular fashion along coordinate directions. Structured grid can be
thought of a mapping from physical plane to computational plane given by

equation 4.24.

x=x(En.O)y=WEn)z=2En.8) (4.24)

In the finite difference method, the solution is obtained over a rectangular or a
cubic grid in the computational plane which is obtained through the
transformation in 4.24. The same transformation is used to transform the
derivatives and governing equations to the computational plane. It is possible to
define finite volume or finite difference approximations which do not require
smoothness of the grid, but these approximations are in general more complex

and computationally expensive.

The major advantages in using structured grids are that it is quite easy to
implement the computational algorithms as the grids are indexed and does not
require the connectivity information. As the structured grids are often orthogonal,
these provide high fidelity solutions to the numerical problem. The major
disadvantages with the structured grids are that it is quite difficult to discretize a
complex domain using this method as a smooth transformation for a complex
geometry might not always be available. Another aspect is the problem associated
with the grid refinements, as the structured nature of the grids is lost during an
adaptive refinement. The difficulties associated with complex domains are often
alleviated with the use of multi-block structured grids which is however a tiring

process and requires large man hours and even might not always be feasible. The
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individual blocks in the grid can be arranged either in adjacent positions as shown
in Fig. 4.6 (a) or overlapping one another as shown in Fig. 4.6(b). In both the
cases special interpolating boundary conditions are required at the interfaces
between the grids. If a single polar coordinate system is used, the grid mapping
becomes singular at the point (x, y) = (0, 0), and the transformation formulas
becomes undefined there. With finite volume methods, it is possible to overcome
this problem by using a special formula for the triangular shaped cells closest to

the point (0, 0).

The blocking of the full domain is similar to unstructured domain decomposition,
but with a difference that each block is further discretized in a structured manner.
The first step in the multi-block structured grid generation is the definition of
blocks of appropriate size and at correct location, and the step involves generating
a structured grid for each block. An alternative to this procedure is the use of
purely rectangular grids with objects “cut out” as holes in the grid, as shown in
Fig. 4.7. With this approach however, it is hard to obtain a desired level of
accuracy in the implementation of the boundary conditions. Furthermore, since
cells are cut arbitrarily, there are chances that the boundary cells become distorted

and very small, causing stability problems for explicit schemes.
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(a) Overlapping blocks (b) Adjacent blocks

Fig. 4.6: Different types of block arrangement

73



For the step of generating a single grid, there are some fairly general techniques.

On the other hand, the division into blocks is usually done manually for each

particular configuration, and can require many days work by an engineer.

s

-

Fig. 4.7: Geometry cut out from a rectangular grid

In the current analysis the structured grids are prepared with the help of multi-

blocking in ANSYS ICEMCFD software. ICEMCFD uses the concept of a

separate blocking framework that is divided to represent the topology of the

model and then associated to the specific model geometry. Structured hexagonal

mesh is generated within each of the blocks and fit into the geometry. Then the

meshes are converted into the unstructured form for solving the governing

equation in ANSYS FLUENT 14.5. A couple of typical meshes for the geometries

used in the current analysis are shown in Fig. 4.8 and Fig. 4.9.

The extents of the physical flow domain discretized and used for the analysis are

given in Table 4.2. In Table 4.2, ‘c’ represents the chord length of the airfoil.

Table 4.2: Physical domain for flow solver

Front 1.0c
Top 25¢
Bottom 25¢
Rear 40c¢
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For meshing for all the geometries, the multi-block structured grids are prepared
with the help of ICEMCFD. The total number of elements for the both diamond
and Busemann biplane airfoils are around 3.5 x 10° with a logarithmic stretching
applied perpendicular to airfoil surface. The number of element is chosen such
that the solution is independent of the number of elements. The boundary layer
mesh has the first cell height of 8.11 x 10° m in order to resolve viscous stresses

correctly.

e —

(a) Diamond Airfoil

(b) Busemann Airfoil

Fig. 4.8: Multi-block grid around (a) diamond airfoil and (b) Busemann biplane
airfoil
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(a) Stagger Upper Element

(b) Busemann Biplane with Leading Edge and Training Radius.

Fig. 4.9: Multi-bloc structured mesh around (a) staggered Busemann biplane and

(b) Busemann biplane with rounded leading and trailing edges

4.9 Discretization

4.9.1 Temporal Discretization

ANSYS FLUENT uses a control-volume-based technique to convert a general
scalar transport equation to an algebraic equation that can be solved numerically.
The integral form of general finite volume method Eq. 4.1 can be written in the

dual time stepping form for implicit time marching as in Eq. 4.16.
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In Fluent, the discrete values of the fluid properties are stored at all cell centers.
However, the face values are required for the convection terms in Eq. 4.16 and
these values are obtained through the interpolation of the cell centre values. This
is commonly accomplished using an upwind scheme. Fluent has several different
schemes available, such as first-order upwind, second-order upwind, power law,
and QUICK. The diffusion terms in Eq. 4.25 are central-differenced with second-

order accuracy.

a - a = = -
—f Wda+ —wda+ ¢ (F.— E) dS:f Q dQ (4.25)
ot Jg 0t 20 9

where t is physical time and 7 is pseudo time. For dual time stepping, Eq. 4.25 is

usually rearranged in the form given by Eq. 4.26.

a a — = =3 -
—WwdQ = ——f de+j[; (E.— F,) dS +f Qda  (4.26)
0t ot Jq 20 9

Theoretically the pseudo term on the left hand side of Eq. 4.26 should approach to
zero at each time step before the physical time marches. On the right hand side, a
steady state condition is satisfied before marching the physical time step.
Temporal discretization is realized using the implicit second-order backward
Euler scheme with an iterative procedure. The nonlinear coefficients are updated
with each inner loop while the outer loop advances the solution in time. The
separate spatial and temporal discretization of the governing equation, Eq. 4.12,
leads for each control volume, to Eq. 4.27.

d(QMW) 5

4.27
— , (427)

where () incorporates the volume, R ; denotes the residual (i.e. the complete spatial
discretization including the source term), M is the mass Matrix, and index / means
the particular control volume. Eq. 4.27 has to be iterated in time to obtain a
steady-state solution (ﬁ, = 0), or to reproduce the time history of an unsteady

flow. For unsteady flows, the 3-point backwards Euler scheme with second-order
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accurate temporal discretization, as given in Eq. 4.28 is used.

3(QM)HWIH — 4(QM)PW! + (QM)P-TWp-L

_ _pn+l
AL = —R, (4.28)

In Eq. 428, At denotes the global physical time step. The superscript n+/
represents the value at next time level, i.e. 7+Af, n is the value at the current time

level, i.e. 7, and n-1 is the value at the previous time level, i.e. -Ar.

4.9.2 Spatial Discretization
Based on the grid, control volumes are defined in order to evaluate the integrals of

the convection and viscous fluxes as well as the source term. The time derivative
of the conservation variables W can be written as:

W__ 1[ (F. — E)ds —f 9] dﬂl (4.29)
ot Q1Jaa )
The surface integral on the right hand side of Eq. 4.29 is approximated by a sum
of the fluxes crossing the faces of the control volume. This approximation is
called spatial discretization. It is usually supposed that the flux is constant along
the individual face and is evaluated at the middle of the surface. The source term
inside the control volume is assumed to be constant. Therefore, for a particular

control volume, £, ; x, Eq. 4.29 can be written as:

il e F,-F )as, -(0)
_ > [F -F Jas _-(QQ 430
dt O g mor e Vm 1,1, K (4.30)

The 1,], K in the Eq. 4.30 represents the control volume in computational space,
N are the number of faces around a control volume (Ny = 6 for 3d case). The
variable AS,, stands for the area of the face m. The term inside the square bracket
on the right hand side of Eq. 4.30 is usually called the residual which can be

written as:
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dt N QI'LK I']'K

1 om=6(= 2
where, Qg = _Zm=?(rmid ' 5)

Wlth, |: ym] =
Zm

and AS, = |Sn 5§m+5§m+52m

For a 3D cell with a control volume, £2; ;k, Tinig denotes the midpoint of the
control volume face m (i.e. for a 3D cell, number of faces m = 6), AS,, in Eq.

431 is the area of the face m, and 7 is the location in space of some point of the

control volume 2 which can be written as 7 = [rx, 1y, rZ]T.

The cell-centre scheme, as shown in Fig. 4.1(b) has been used in Fluent, wherein
the control volumes are identical to the grid cells and the flow variables are
associated with their centroids. Thus, the cell face 7,1/ x is the face between
cell ,J,K and ! + 1,/,K in Fig.4.1(b). Therefore, the convective fluxes through
the face (I + 1/2,/,K) is as given by Eq. 4.32.

(FJ:MJ.r—z o012 FQ[WF—*- y. 21 07 lﬁsr—z ITE — Dy 2JE

[H?LJ:K . I'-'E}.r_u:;{) (4.32)

ko | —

rd
Wra 2JK

where D is the artificial dissipation which is added to the central fluxes for
stability.

The discretization of the viscous flux F, in Eq. 4.32 is often calculated from cell
interface value. The AUSM (Advection Upstream Splitting Method) scheme is
used for calculating the variables on the cell. Here too, the flux is split into two
separate components so that each one may be properly upwind stenciled. Liou
and Steffen [60] are the original authors of this technique, which has been

improved and altered several time both by them and by others as well [60]. In the
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original AUSM scheme, the flux term is split into two parts, the convective flux
and the pressure flux as given in Eq. 4.33.
pu 0
F=F.+F = (pu2 ) + (p) (4.33)
puhyg 0
The convective flux is carried by the flow, i.e. through the entropy wave. It can
be defined completely in the upwind direction by using the properties of the
convective (entropy) wave. The pressure term of the flux is the term that is
carried by the entropy waves, which allow for travel in a direction against the
flow in a subsonic situation. The convective term is thus separated into two
relative contributions. First of the two, the convective fluxes are evaluated at the

interface as given by Eq. 4.34.

pa
Fo =My, { pua} (4.34)
pahyg (LorR)

The special Mach number term that has been pulled out of the convective flux
term is the "convective" Mach number. The convective Mach number is a
measure of the effective convective potential of the flow, based on the strength of
the entropy eigenvalue. The convective Mach number can be defined as in Eq.
4.34.

My, = Mj + My (4.35)

The definitions for the left and right Mach numbers are taken from the Van Leer
method [60], as in Eq. 4.36.

-+

1(MJ_rl)2 if M| <1
mMt={ % (4.36)
(M £ |M]) if IM| >1

N =

This equation shows that the convective Mach simply reduces to the full signed

Mach number for any supersonic flow, while it employs Van Leer's Mach number
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splitting for subsonic flows. The convective Mach number definition is one of the
key variations between the successive AUSM enhancements. The “L or R” in the
remaining flux term is a switch that corresponds to the sign of the convective
Mach number as defined in Eq. 4.37.

a .
{ppua} _ {{ YLeFT if My 20 (4.37)

Bl if My <0 '
pah, LorR) { 3ricnr f My

In this way, the upwind convective flux is defined based on the convection Mach
number of the flow. The pressure term is treated separately. It is defined such that
the communication in both directions may be admitted. Eq. 4.38 shows the

calculation of the pressure flux.
P=P'+P; (4.38)

The left and right pressure terms are defined by using second order polynomial
functions of the acoustic speeds. Liou and Steffen (1993) also give a slightly
simpler first order polynomial splitting, but the second order scheme, given in Eq.

439, is used here.

i%(M +1D2Q2FM)  if M| <1

S VICEITID) if IM] > 1 >

2 M

Again the pressure term becomes the full signed upwind pressure for any
supersonic flow. For subsonic flow, the pressure correctly shows characteristics
for both upwind and the downwind waves. The fluxes at any cell boundary then
become defined by Eq. 4.40, with supplementary definitions given in Eq. 4.36 and
Eq. 4.32.

. pa 0
F = (ME' + Mgp){ pua + {P; + PR_} (4.40)
pahg (Lor R) 0
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This defines the flux terms necessary to evaluate the explicit residual. For
implicit schemes, the Jacobian of the flux must be computed since the left and
right pressure and convective Mach number values shown in Eq. 4.40 are only
functions of the corresponding one-sided state. Eq. 4.41 and 4.42 give the left and

right derivatives for any term in the Jacobian matrix.

oF a8 (P oMy ( P¢
S = (M} + Mp) =i puay +——f pua i (4.41)
q; ilpaho), %9 \pahe) ;o gy
oF Lo (P amp(P?
Soriear = (MU + M) o=y PUa ¢+ ——p pua ¢ (4.42)
qj i \paho)p % \paho) gy

The first term in each derivative becomes zero if the switch does not indicate the
respective direction, i.e. if the convective Mach number is positive, the convective
flux will be "LEFT" biased and the derivative of the flux with respect to the right
state goes to zero by definition. Thus in this case, the first term of Eq. 4.42
becomes zero. However, the second term remains non-zero since is an actual
term instead of a derivative. For supersonic flows, the second and third terms
goes to zero for the downwind side of the flow. The actual derivatives with
respect to the face conservative variables for the pressure, Mach number, and flux

terms are relatively straight forward by employing the chain rule.

4.10 Initial and boundary condition

The physical boundary condition is the utmost important aspect of the problem
and needs to be applied correctly for simulating real life situations. This is
because of the nature of the equations and their domains of dependence and zones
of influence have implications for boundary conditions. The governing equations
described above are very generic and do not change from one problem to another.
Therefore, apart from these conservation equations, initial and boundary
conditions are needed to define a problem. Initial conditions are specified by

assigning the density, flow velocities and pressure everywhere in the solution
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region before the start of the solution procedure. Typically the initial conditions
are set such that the density, pressure and flow velocities are freestream values.

The two common boundary conditions for an external flow are the wall boundary
condition and the farfield boundary condition. Wall boundaries are the natural
boundaries of the physical domain which arise from the wall surfaces being
exposed to the flow. At the surface of the boundary, the relative velocity between
the fluid and the solid wall is zero, in the case of the viscous fluid. The truncation
of the physical domain or system for the purpose of numerical simulation leads to
artificial far-field boundaries, where certain physical quantities have to be
prescribed. The farfield boundary condition has to fulfill two basic requirements,
first, the effect of the outer flow region must not reflect back to the main flowfield
region selected for the numerical calculations, and secondly the domain truncation
should have no notable effect as compared to the infinite domain on the flow

solutions.

4.8.1 Wall Boundary Condition

In this work, all the solid walls are treated as viscous wall. Therefore no-slip
condition is applied, which requires the fluid velocity at the wall be equal to the
surface velocity. In a viscous flow, the flow velocity between the wall surface and
the fluid is assumed to be zero. It is called no-slip condition. For a stationary

surface in a two-dimensional Cartesian system, this condition can be described as:

u,=v,=0at y=0

w

4.8.2 Far-field Boundary Condition

Fig. 4.10 shows a typical example of the CFD domain with different boundaries
condition applied. The pressure farfield boundary condition is applied on the inlet,
outlet, top and bottom surfaces and the magnitude of the flow parameters are
stipulated at the inlet and on top and bottom farfield boundaries. The value of
various parameters stipulated or calculated on the farfield conditions are given in

table 4.3.
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The farfield boundary on the background mesh is placed as far away in the radial
direction from body surfaces as computationally feasible such that the conditions

at these mesh points are very close to freestream.

Top

Inlet Ohtlet

Bottom

Fig. 4.10: Farfield boundary conditions for domain around Busemann biplane.

Table 4.3 Farfield boundary condition

Symbol Units Values
Mach Number M - 0.5-235
Temperature T K 288.16
Pressure P Nim2 101325.0
Turbulent viscosity ratio LT - 2.0
Molecular viscosity M Kg/ms 1.7893 x 107
Revnolds number R= - 1.14 % 107 - 5.78 x 107

4.9 Grid independent Study
The number of element is chosen such that the solution is independent on the no

of elements. Figure 4.11 shows the variation of Drag coefficient with number of

84



grid, and is found that the solution becomes independent of the number of
elements for grids with more than 3.5 x 10° elements. The boundary layer mesh
has the first cell height of 8.11 x 10°m in order to resolve viscous stresses
correctly. The results is calculated at standard sea level condition of pressure

101325 N/m?, temperature 300 K, density 1.1766 kg/m3 and viscosity 1.7894¢”

kg/m-s.
0.015
0.01 \\_\ —o—0—0
CD
0.005
0
0 100000 200000 300000 400000

No of Elements

Fig. 4.11: Variation of drag coefficient with number of elements for the

Busemann airfoil.

4.10 Solver Validation

As a part of the solver validation studies, the validations of the mathematical
models used and the numerical schemes selected in the state of the art CFD
software ANSYS FLUENT 14.5, the standard diamond airfoil and the Busemann
type biplane configuration are studied under non lifting conditions at supersonic
speeds. The results obtained for these two cases are compared with the theoretical
values that are calculated using the shock expansion theory. The flow structures
for the two cases are also compared with the flow patterns reported in the

literature.

4.10.1 Diamond and Original Busemann biplane
In this section the aerodynamics characteristics viz. the lift and drag coefficients,
of the diamond and Busemann type biplane configuration at non lifting conditions

are studied. The geometrical dimensions for the both airfoils are taken in such a
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way that, the overall volume of the body remains same for the easy comparison of
the results between the two cases. For the diamond airfoil the thickness/chord
ration is taken as 0.05, whereas for the each element of the Busemann biplane the
thickness/chord ratio is set to be 0.05. In order the get the minimum wave drag for
the Busemann type biplane (at M,, = 1.7), the distance between the elements is
chosen as 0.5c, and the angle of attack for both the airfoils is set to zero. The
multi-block structured grids are prepared with the help of ICEMCFD software
and then converted into unstructured as discussed in the section 4.6.2. The total
number of elements for the both diamond and Busemann airfoils are around 3.5
million and are stretched perpendicular to airfoil surface so as to resolve the
viscous stresses. The results are obtained through numerical solution of 2
dimensional Navier-Stokes equations in ANSYS FLUENT 14.5 with the
boundary conditions discussed in the previous section. A second order accurate,
steady state results are obtained through time marching solution of coupled, 2-
dimesional Navier-Stokes equations using FLUENT. Spalart-Allmaras (SA)
turbulent model (one equation model) is used for both the configuration to predict
the effect of turbulence and for the calculation of turbulent viscosity.

The results for lift and drag coefficients obtained from the numerical simulations
are compared with the standard supersonic thin airfoil theory at M, = 1.7 and are
given in Table 4.4. From the comparison of these results, we can say that the
results obtained from the numerical simulation are good agreement with the

analytical results.

Table 4.4 Numerical and Theoretical lift and drag coefficients of diamond and
Busemann airfoil.

Theoretical results | Numerical results
Cr Ch Cr Cp
Diamond 0.0000 0.0291 | 0.0000 0.0301
Busemann 0.0000 0.0000 | 0.0000 0.00989

The magnitude of the drag coefficient for the Busemann type biplane is lower

than the standard Diamond airfoil at M, = 1.7, this mainly because of the wave
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cancellation and reflection between the elements. However the drag coefficient
cannot be completely eliminated due to the presence of the boundary layer effect.

Fig. 4.12 and 4.13 shows the variation of C, (pressure coefficient) and the Mach

numbers at M., = 1.7, for the Diamond and Busemann type biplane configuration.

V.
-

(a)C, variation (b)Mach number Variation

Fig. 4.12: C, and Mach number variation for Diamond airfoil at M, = 1.7

(a) C, Variation (b)Mach number Variation

Fig. 4.13: C, and Mach number variation for Busemann airfoil at A, = 1.7

Next, the behavior of the Busemann biplane at Mach numbers other than the
design Mach number 1.7 is examined. In subsonic case, the high pressure region
is developed before the throat of the section due to the compression effect and

after the throat of the section; the pressure decreases due to the expansion of the
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flow generating a significant amount of pressure drag. The region of low pressure
aft of the mid-section is expands with increasing freestream Mach number and

further increment in the pressure drag is observed with increasing Mach numbers.

As can be seen in Fig. 4.14 the maximum pressure coefficient value of 0.357 at
M,. = 0.5 increases to 1.29 at M, = 1.0. The main cause of this pressure increment
is the compression effect between the element and the larger region of high

pressure ahead of the mid-section of the Busemann biplane elements, as a results

the overall drag component is increases from 0.0167 at M,, = 0.5 to a value of

0.1283, at M., = 1.0.
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1240400 2
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M.=0.9 M.=1.0

Fig. 4.14: Contours of C, for Busemann biplane at 0.5< M,,< 1.0
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In the case of supersonic flow at M,, = 1.2, due to the compression effect between
the Busemann biplane elements, a strong bow shock wave is generated in front of
the body. With the further increment in the freestream Mach number the bow
shock wave moves closer to the body and the losses across the shock wave
increases with subsequent rise in the static pressure aft of the shock wave as can
be seen in Fig. 4.15. This creates a large region of high pressure region between
the biplane elements ahead of the mid-section. As a result the drag coefficient of

1.38 at M., = 1.2 increases to a value of 1.54 at M,. = 1.6.

M.=1.3 M,=106

Fig. 4.15: Contours of C, for Busemann biplane at 1.2 <A/, < 1.6.
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With a further increment in the Mach number, i.e. M,, = 1.7, the detached shock
wave becomes attached to the body and the pressure aft of the shock wave
reduces slightly due to formation of an oblique shock wave and a decrease in the
pressure drag is observed. Due to the symmetrical positioning of the upper and
lower element of the Busemann biplane the strength of the attached right running
shock wave is eliminated by the left running shock wave due cancellation and
reflection between the elements and the pressure drag is reduced to a value of
0.00989 at the free stream Mach number 1.7. The pressure variation between the

biplane elements at a freestream Mach number of 1.7 is shown in Fig. 4.13.

With further increment in the free stream Mach number (M., > 1.7), the shock
wave angle at the leading edge of the elements is decreased and the shock-shock
interaction point moving backwards. The expansion waves generated at the throat
of the biplane interacts with the shock waves decreasing the pressure behind the
throat of the section, hence increasing the pressure drag for the section. With
further increment in the Mach number, the shock interaction point between the
element further moves downwards and further reduction in the pressure aft of the
mid-section and an increase pressure drag for the combination. The contours of

pressure coefficients for various Mach numbers above 1.7 are shown in Fig. 4.16.

The shock-shock interactions between the biplane elements govern the drag of
Busemann biplane. The detailed variation of drag coefticient for diamond airfoil
and the Busemann biplane configuration for a wide range of freestream Mach

numbers (0.5 <M, <2.5) are given in Fig. 4.17.

From the plot we can conclude that the Busemann type biplane configuration
provides the lowest drag at M, =1.7, and the drag coefficient are lower than the
Diamond airfoil for the range of Mach numbers from 1.7 to 2.5. The Busemann
type biplane configuration shows the better performance (low drag coefficient) at

supersonic speeds (1.7 < M. < 2.5), but the performance is poor at lower Mach
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Numbers (M, < 1.6) due to the flow chocking phenomenon and the magnitude of

the drag coefficient is greater than the Diamond airfoil.

Mo,=23 M.,=235

Fig. 4.16 C, variation of Busemann biplane for 1.9 <M, <2.5.

The drag coefficients for both diamond airfoils and Busemann biplane at various
freestream Mach numbers obtained numerically are in close agreement with those
reported in the literature and with those calculated using the shock-expansion
theory. The numerically values of drag coefficients at zero lift differ from the
analytical values by less than a percent. The difference in lift and drag coefficients

observed is because of the viscous model of the flow as the shock-expansion
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theory is based on inviscid model of flow. The shock-shock interaction shown in
Fig. 4.16 matches closely with those reported in literature [9, 10]. The numerical
methodology opted for the study of the aerodynamic characteristics of modified
Busemann biplane thus, can provide reliable results within the limitations of

computational assumptions.

0.16
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Cp 0.08
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Fig. 4.17 Cp variation with freestream Mach number for Diamond and Busemann

airfoil at zero-lift condition.
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