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3.1 INTRODUCTION  

When implementing a digital system like digital filter the one can face two 

choices for implementation: choosing to use a dedicated Digital Signal Processing 

(DSP) processor or choosing hardware based approach like Programmable Logic 

. This 

chapter attempts to implement the FFT/2D-FFT algorithm in programmable logic 

devices such as FPGAs. Implementing digital filters in hardware can have various 

advantages over a dedicated DSP processor approach. As IC processing advances 

and strives to mee  design and programming has improved in 

both cost and speed, making FPGA a feasible alternative for implementing digital 

filters [50]. 

Not only logic of the devices has improved but with the advent of Hardware 

Description Languages (HDL), the method of designing with programmable logic 

has become more efficient. HDLs deal with an alternative to the schematic based 

approach to logic design, in which the logic gates, flip-

are connected in schematic fashion. HDLs are coding based or text based design 

entry method in which the design will be coded with respect to the hardware. This 

allows the designer to have flexibility and describe the logic function at a higher 

level of abstraction thereby increasing efficiency. The two primary HDLs used 

today are Verilog HDL and Very High Speed IC HDL (VHDL), both are IEEE 

standards. Both of these HDLs (Verilog /VHDL) are separate languages and can 

be used to implement digital filters.  

This chapter discusses how to implement FFT/2D-FFT in programmable 

logic using VHDL. In the section 3.2 advantages of carrying out Digital signal 

blocks and radix-2 encoding formats are studied in section 3.3 and 3.4. The 

section 3.5 describes the implementation of 8-point FFT in VHDL, followed by 

the Simulation and synthesis results of the same are discussed. Section 3.6 

describes implementation of 2D-FFT algorithm, including the concept of DDS-



Core and Ping-Pong Memory architecture used to design the PHY- layer of 

OFDMA and the last section summarizes the chapter. 

3.2 ADVANTAGES OF CARRYING OUT DSP ON PLD S (FPGA) 

ignificantly 

improved performance over a DSP processor. Other advantages include reduced 

power consumption. Although dedicated DSP processors offer the most flexibility 

but they require extra clock cycles compared to a hardware implementation and 

this can be power inefficient. Since many embedded systems already have some 

type of programmable logic on the system, the PLD may have the space available 

for a digital filter. If this extra logic space is not available, the designer may be 

faced with porting all the firmware over to a dedicated DSP processor. A better 

alternative might be to increase the size of the programmable logic device to 

accommodate a digital filter. If the PLD is already in the data path of the 

embedded system, the latter approach may be easier than initiating a new 

hardware design with a dedicated DSP processor. 

Many embedded systems have both a dedicated DSP processor with a PLD 

device. In over sampled DSP systems, where the data arrives at a high rate, a PLD 

can down sample the data prior to the DSP processor. When decimation is 

required, the PLD can off-load some of these processing tasks by performing both 

filtering and decimation before data is transferred to the DSP for further 

processing at a lower sample rate. 

3.3 BASIC ARITHMETIC BLOCKS FOR DSP 

The three basic building blocks of any digital filter are unit delay, the 

summing node and the multiplication node (multiplier) which is shown in the 

Fig.3.1. The combination of a multiplier and summing node is known as MAC 

block which stands for multiply and accumulate (MAC) block. The unit delay is 

also called as filter tap and is implemented by recalling an old value from 

memory, storing the new value into memory and waiting for T seconds, where T 



is the sampling period. The Z transform of the unit delay is Z-1 which can also be 

expressed as 

e-      (3.1) 

 where j2 = -  

Simple addition operation is performed by the summing node. The multiplier can 

be used to multiply a signal by a coefficient or to multiply two signals. These 

blocks are represented graphically with signal flow diagrams (SFD) or signal flow 

graphs (SFG) in Fig.3.1. 

 

 

 

Fig.3.1. Symbols used in Digital filter structures. 

 

 

 



3.4 BINARY (RADIX-2) ENCODING FORMAT 

The FIR filter specifications contain the filter coefficients to be stored in 

the filter and are also used to carry out the delay, addition and multiplication 

operations. These coefficients are signed floating point numbers and such 

numbers must be converted into another form which can be easily stored and 

operated in an FPGA. There are so many possible ways to encode numbers using 

binary, a summary of several possible formats that could be used to represent the 

above coefficients is described below. 

Unsigned numbers are easy to encode and Unsigned Radix-2 format is the 

simplest possible encoding format. All the positive integers are allowed in the 

range 0 to 2n-1 to be encoded. In this Unsigned Radix-2 format each bit of the 

binary number has a weight associated with it, the same has been shown as an 

example in Table 3.1. 

Table 3.1 Unsigned Radix-2 encoding format 

Weight: 128 64 32 16 8 4 2 1 

Number

: 

1 0 1 1 0 0 1 0 

128 + 32 + 16 + 2 = 178 

3.4.1 Sign Magnitude: 

Sign magnitude notation allows representing the negative numbers. These 

are encoded by allocating one bit to specify the sign of the number. MSB bit is 

used to indicate the negative bit. If the MSB bit is indicated 

as negative number, it is positive number. The 

remaining bits are then encoded by the radix-2 encoding method as shown in the 

Fig.3.2. This allows the system to store numbers in the range (2n-1) to 2n-1.  

Example: 



 

 

Weight: Sign 64 32 16 8 4 2 1 

Number: 1 0 1 1 0 0 1 0 

(32 + 16 + 2) = -50 

Weight: Sign 64 32 16 8 4 2 1 

Number: 0 0 1 1 0 0 1 0 

(32 + 16 + 2) = +50 

As there are two separate encodings for the number zero, that stands as a 

disadvantage. In the case of an 8-bit number these are 10000000 and 00000000. 

3.4.2 1 s Complement: 

Compliment of a number plays important role in performing all the 

arithmetic operations in digital systems. 1 s complement also allows to 

compliment the numbers in the range (2n-1) to 2n-1 to be encoded. To encode a 

1 s complement all the zeros of a binary number are replaced by one and ones by 

zeros i.e. bit by bit complement of the binary number is taken. For example: 

Table 1  

1s Complement Decimal Equivalent 

01111111  127 

10000000 -127 

11111001  -6 

00000110   6 



3.4.3 2 s Complement: 

2 s complement is the standard method of storing signed binary integers. 

Representation of numbers in the range (2n) to 2n-1 

compliment, and has the major advantage of only having one encoding for 0. To 

perform 2 s complement encoding the bits of the 

binary number are complemented, and then 1 is added. For example: 

Table.3.2  

 Decimal Equivalent 

10000000 127 

10000001 -128 

11111010 -6 

00000110 6 

 

3.4.4 Mantissa Exponent Encoding: 

The Mantissa exponent representation is the standard format to store the floating 

point numbers. In this, a number is represented in scientific notation as  

Mantissa × radixsign × exponent 

Usually the radix is fixed and only the mantissa, sign and exponent are encoded. 

up to 2n numbers can be encoded using this method, obviously the accuracy is 

limited. The IEEE standard 754 defines a standard for binary floating-point 

arithmetic using either 32 or 64 bit numbers. The 32-bit format is shown in the 

Table 3.5. 

Table 3.3: Mantissa Exponent encoding 

Sign bit Exponent (8 bits) Mantissa (23 bits) 



The range of numbers which can be stored using this standard is approximately 

1.8 × 10-38 to 3.40 × 1038. However, since the implementation of OFDMA i.e. 

large FFT calculations requires large number of complex additions and 

multiplications, floating point arithmetic is not feasible to work out on FPGA. 

3.4.5 Chosen format for Present work: 

Sign-magnitude representation of the coefficients has been chosen as the 

number representation to be used to store the twiddle factors and process the 

inputs points of the FFT. However, Unsigned Radix-2 cannot represent negative 

numbers and so is not suitable for the implementation. While 1 s complement and 

2 s complement are both signed number representations, the Adders and 

Multipliers needed to implement operations with these numbers which are more 

complicated than those required for signed magnitude operations, and so would be 

harder to make faster on FPGA. 

The other advantage of signed magnitude format is that the signed bit can be 

removed easily before multiplication and then multiplication can be implemented 

utilizing one less bit for each of the two arguments. This results in reduced logic 

and time. However, the sign must be computed and restored in the product after 

multiplication [51], [52], [53]. 

For a DSP implementation, it is necessary to represent numbers that have both a 

whole part as well as fractional part. Typically, we view the signal S  as a whole 

number and the coefficient C  as having a whole part and a fractional part. A 

commonly used representation of the coefficients is called the Qn format. In Qn 

format, the number n  represents the number of binary digits to the right of the 

binary point. In other words, it is the size in bits of the fractional part of the 

number. As an example, the 12-bit number 6.1 in Q0 format is 0000 0000 0110. 

The same 12 bit number 6.1 in Q8 format is 0110 0001 1001, which actually 

equals 6.09765625 due to coefficient quantization. Notice that, for this 

representation, we simply multiplied 6.1 * 28 = 6.1 * 256. In general, the largest 

numbers of fractional bits are used to represent the coefficients, while being 



careful that the whole part of the number has enough bits to handle the expected 

range of the coefficients. For example, the 12-bit number 1.918 could be 

represented best in Q10 format. 1.918 * 210 = 011110101100. In fixed-point 

arithmetic, one trades accuracy and range as shown in Table 3.6. 

Table.3.6. Fixed-point Qn Representation Examples 

12bit Format Representation Range Approximate 

resolution 

Q0 Whole numbers -2047 to 2047 1 

Q1 Fractional Numbers -1023.5 to 1023.5 0.5 

Q10 Fractional Numbers -1.999 to 1.999 0.001 

 

In fixed-point arithmetic, care must be taken such that the numbers are in the 

same Q format prior to addition or subtraction. For DSP applications, we can 

think of multiplication as being a Q0 number (the signal) times a Qn (a coefficient) 

number, yielding a Q0 result (scaled signal). For a 12-bit Qn multiplication 

process, we first multiply the signal by the coefficient, yielding a 24 bit result. 

Only 12 bits of the product are returned. The 12 bits, which are returned, are the 

ones produced if the product was shifted right by n  bits. 

As an example, let us take the Q10 coefficient 1.414 multiplied by a signal of 46. 

We expect a result of 65. The coefficient 1.414 in Q10 is 1448. 1448*46=66608 = 

000000010000010000110000. Shifting right by 10, we have 000001000001 

which is 65. 

 

 

 



3.5 8-POINT FFT IMPLEMENTATION 

The basic building blocks of FFT implementation are Adder, Multiplier, 

Butterfly structure and Twiddle factor multiplier. The basic formula for the FFT 

calculation, i.e. convert the input samples in to the frequency domain from time 

domain is given by  

21
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There are two types of Radix-2 FFT algorithms they are Decimation in Time 

(DIT)-FFT and Decimation in Frequency (DIF)-FFT. Both of transformations rely 

on the recursive decomposition of an N point transform into two (N/2) point 

transforms. This decomposition process can be applied to any composite (non-

prime) N. The method is easier if N is divisible by 2 and if N is a regular power of 

2, the decomposition can be applied repeatedly until the trivial '1 point' transform 

is reached. The radix-2 decimation-in-frequency FFT is an important algorithm 

obtained by the divide-and-conquer approach [54], [55]. The Fig. 3.2 reveals the 

first stage of the 8-point DIF algorithm.   

 

Fig.3.2. First stage of 8-point Decimation in Frequency FFT algorithm 



The decimation, however, causes shuffling in data. The entire process involves v 

= log2N stages of decimation, where each stage involves N/2 butterflies of the 

type shown in the Fig. 3.3 

. 

Fig.3.3 Butterfly structure of Decimation in Frequency FFT algorithm 

Here a, b are the input points, A, B are the FFT output points in frequency 

domain, WN is the twiddle factor and is given by equation 3.3. And few real and 

imaginary values of twiddle factor are shown in Table 3.7. 

2n
N

j nW e
N

                                            (3.3) 

Table 3.7. Twiddle factor Values

1 Imag ( W8
0 )  =  0 0000 0000 0000 0000 

2 Real ( W8
1 ) = 0.707106781186  0000 0000 1011 0100 

  Imag ( W8
1 ) = - 0.707106781186 1000 0000 1011 0100 

3 Real ( W8
2 )  =  0 0000 0000 0000 0000 

  Imag ( W8
2 )  =  - 1 1000 0001 0000 0000 

4 Real ( W8
3 ) = - 0.707106781186 1000 0000 1011 0100 

  Imag ( W8
3 ) = - 0.707106781186 1000 0000 1011 0100 

5 Real ( W8
4 ) =  -1  1000 0001 0000 0000 

  Imag ( W8
4 ) =  0 0000 0000 0000 0000 

Consequently, the computation of N-point DFT via this algorithm requires 

(N/2) log2N complex multiplications. For illustrative purposes, the eight-point 

decimation-in frequency algorithm is shown in the Fig.3.4. We observe that the 

output sequence occurs in bit-reversed order with respect to the input. 

Furthermore, if we abandon the requirement that the computations occur in place, 

it is also possible to have both the input and output in normal order.   



 

Fig.3.4 Structure of 8-point Decimation in Frequency FFT algorithm 

3.5.1 Adder Implementation 

The adder module in the FFT implementation is shown in the fig.3.5.The 

following adder module has been implemented by using signed magnitude data. 

In DSP, we know that the subtraction also takes place in the form of addition i.e. 

A-B = A + (-B). The same was simulated in Modelsim and the output wave is 

shown in the Fig.3.5. 

 

Fig 3.5.Flowchart of Addition and Subtraction with Signed-Magnitude Data 



3.5.2 Multiplier Implementation 

The sign bit is made positive if both are of same sign, and made negative 

if both are of opposite sign. Since the product of two Q8 format numbers will be 

in Q16 format, while during truncation The 22nd bit to 8th bit(total 15 bits) of 

product are taken as truncated magnitude to make the result also in Q8 

format[56]. 

 

Fig.3.6. Simulation output of 16 bit Signed magnitude addition 

In the same way Butterfly structure can be implemented by multiplying with the 

twiddle factor values where ever necessary in the algorithm. The overall 

simulation output of 8-point FFT combining the adder module, multiplier module, 

twiddle factor module and the butterfly structure is shown in the Fig. 3.7. 



 

Fig.3.7.The Simulated output of 8-point FFT 

 

3.6. 2D-FFT IMPLEMENTATION FOR OFDMA 

2D-FFT algorithm is implemented by using two shorter length FFTs 

(lengths N1 and N2) to calculate an FFT of length N = NI xN2 [57]. The two-

dimensional (2D) FFT of N= N1X N2 is defined as follows as shown in the equation 2.7.  
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IEEE STD 802.16-2005 defined  clearly:  the  core module  of OFDMA  physical  

layer  is  the  FFT  module,  which  can  be used  in  the calculation of  FFT  

points that  are:  2048  points  (back  compatible with  IEEE  STD  802.16-2004),  

1024  points,  512  points  and 128  points.   



The design about variable point FFT processor is just based on FFT module in 

OFDMA system application. According  to  the  idea  of  two-dimensional  

Fourier algorithm,  i.e. if  N =  128, then N1 =  2, N2 =  64,  From  128 =  2  *  64 

,We find  that when one wants to achieve 128-point FFT, Firstly  the data  is 

arranged  in  64  lines  and  2  rows,  Secondly  the  input  data will  transform  the  

64  points FFT,  then  the  result multiplies with the twiddle  factor,  Thirdly,  let  

the  result  do  2  point  FFT between 64-pt and 2-pt FFT outputs. Similarly, 

Calculation of  the  512-point FFT firstly do  the  64 points  FFT,  then  transform 

further  8  points  FFT [58];  The  same way  to  calculation of  the  1024  and  

2048  points  FFT is implemented.  Block diagram  of  the overall  design  of  the  

FFT  processor  is shown  in  Fig.3.8.  

 

Fig.3.8.Block diagram of the overall design of the Variable length FFT processor 

3.6.1. Pipeline structure of the 64-point FFT 

 The 64 point FFT is also implemented in 2-Dimensional FFT fashion using 

8-point FFT modules as the kernel part. This module is the most frequently used 

in the design. Four kinds of input data length all must first pass through the 64 

points FFT module. Block diagram of this part is shown in Fig.3.8. The same idea 

to implement the 64-point FFT in the module based on 2D Fourier transform 

algorithm is composed of two 8-point FFT modules [59]. 

 The 8-point FFT processor architecture consists of a single radix-2 butterfly 

(which is referred as the butterfly processing element), a dual-port FIFO RAM, a 

coefficient ROM, a controller and an address generation unit. 



Fig.3.9. Pipeline structure of 64-point FFT Processor 

3.6.2 Internal Block Diagram of the 64-point FFT: 
The Fig. 3.10 shows the internal blocks of 64 point FFT module. The 

Input Buffer takes continuous data( x_in) and apply input clock as in_clk as 

shown in below diagram. This input Buffer performs as a SIPO (serial input and 

parallel output) i.e. it takes input as serial data and gives output as parallel. It will 

arrange the input data into rows and columns wise based on n2N1+n1 

n2 2 - 1 1 -1. 

Fig.3.10. Internal Block diagram of the 64-point FFT module 

 

 

 



Table.3.8. Data arrangement in Input Buffer based on n2N1+n1

 

The data arrangement in the input buffer is based on n2N1+n1 and the same is 

shown in the table 3.8. In Input Buffer it will select first column because it is 

serial input parallel output, so it will select first column and send to the next block 

i.e. N2 point FFT, this process is continuous up to end of the data. For example if 

input data can be 64 samples it will arrange the data as shown in above Fig. Next 

block is N2 point FFT i.e. 8 point FFT so it will take 8 samples at a time so Input 

Buffer select first column it contain 8 samples an send to the N2 point FFT. This 

perform computation is fast as compared with input buffer i.e. 8 times faster than 

input it is required because it will complete computation until the next input is 

reached. So as compared with clock FFT clock is 8 times faster than input clock. 

After completion of FFT computation it will send the data to Ping Pong Buffer 

before it will multiply with twiddle factors .This Twiddle factors are stored in 

weight memory and it will multiply with according to coming data and send the 

data to Ping Pong Buffer. 

Fig.3.11. shows the implementation of the 64-point FFT module by using two 8-

point FFTs using MATLAB software. The Figure 1 indicates the input signal 

where all the input points will be covered and figure two indicates two 8-point 

ary parts of the 

processed FFT. 



 

Fig.3.11. FFT 64 with two 8 point FFTs MATLAB results 

 

3.6.3 Ping-Pong Memory architecture 

The Ping Pong Buffer contains two memory blocks, these two memory 

blocks perform Simultaneously i.e. one memory block writes the first FFT output 

and Second memory block reads the data from first FFT output and in the next 

clock it will perform reverse operation i.e. first memory block reads, and another 

performs the write operation and again in next clock operations vice versa [60], 

[61]. 

Ping-Pong buffering increases memory bandwidth by a factor of two. Ping-pong 

buffering halves the number of memory operations per unit time, allowing faster 

buffers to be built from a given type of memory. Alternatively, for a buffer of 

given bandwidth, ping-pong buffering allows the use of slower, lower-cost 

memory devices. But ping-pong buffers have disadvantage that they waste a 

fraction of the memory. The overflow rate is increased until the additional 

memory is used half of the memory is wasted in the worst case. This can be 

compensated by doubling the size of the memory. 

Fig.3.12 shows a ping-pong buffer of total capacity M cells, with the arrival and 

the departure processes denoted as A and B, respectively. The buffer consists of 



two physically separate memory devices, each of size M/2. The two memories are 

arranged in such a way that from the outside, they appear to be a single buffer. 

Read and Write operations can take place simultaneously in a ping-pong buffer, 

but only in physically separate memory devices. When a cell arrives and finds that 

one memory is being read, as shown in Fig.3.13, the arriving cell is directed into 

    

                

Fig.3.12. PING PONG memory 

 

Fig.3.13 PING PONG memory Read and Write operations 

If Ping Pong memory writes the output data in to the buffer as column wise means 

it will send the data as parallel to the next buffer. This buffer arranges complete 

data as rows and columns wise. It will send the first column to the N1 point FFT 

i.e. 8 point FFT which is the kernel module. This process continuous up to last 

column .The output of N1 point FFT can be perform magnitude operation i.e. Real 
2+imaginary2= magnitude in the Magnitude block and send output to output 

Buffer which is PISO (parallel input and serial output). Since it works on high 

frequency, it will send the output as serially. This can be achieved by applying 



clock whose clock rate is 64 times faster than input clock. Finally the data is 

captured at the output serially. 

As mentioned above, the result multiplies with twiddle factor, and performs 2 

point-FFT with the result, Finally 128 point FFT is achieved. Similarly, 

Calculation of the 512-point FFT firstly do the 64 points FFT, then transform 

further 8 points FFT; The same way is used to calculate the 1024 and 2048 points 

FFT. 

Select and control module is also the kernel part to complete the alterable data 

length in the current dissertation. It is based on the input data points to select the 

results stored in data memory and choose the next flow. A two bits signal 'mode' 

is chosen as the mode signal simply as 4X1 Multiplexer to which mode 00, mode 

01, mode 10, mode 11 will be the inputs. When mode = 00, means to choose 2 

points FFT module, to complete the 128-point FFT; when mode = 01, means to 

choose 8 FFT module, to complete the 512-point FFT; Equally: When the mode = 

10, means to completed 1024 point FFT; when mode = 11, means to complete the 

2048 point FFT. 

3.6.4 Direct Digital Synthesis Core 

Direct Digital Synthesis (DDS) provides remarkable frequency resolution 

and allows direct implementation of frequency, phase and amplitude modulation 

instead of using function generators. DDS is a method of producing an analog 

waveform usually a sine wave by generating a time-varying signal in digital form 

and then performing a digital-to-analog conversion. Because operations within a 

DDS device are primarily digital, it can offer fast switching between output 

frequencies, fine frequency resolution, and operation over a broad spectrum of 

devices are very compact and draw little power [62], [63], [64], [65]. 

DDS devices like the AD9833 are programmed through a high speed serial 

peripheral- interface (SPI), and need only an external clock to generate simple 



sine waves. DDS devices are now available that can generate frequencies from 

less than 1 Hz up to 400 MHz (based on a 1-GHz clock). Because a DDS is 

digitally programmable, the phase and frequency of a waveform can be easily 

adjusted without the need to change the external components that would normally 

need to be changed when using traditional analog-programmed waveform 

generators. DDS permits simple adjustments of frequency in real time to locate 

resonant frequencies or compensate for temperature drift. 

The core consists of two main parts, a Phase Generator and SIN/COS LUT, which 

can be used independently or together with an optional dither generator to create a 

DDS capability. A time-division multi-channel capability is supported, with 

independently configurable phase increment and offset parameters. Fig.3.14 

provides the block diagram of the DDS Compiler core. 

Fig.3.14. DDS Compiler Core 

Fig.3.15 and Fig.3.16 shows the simulation result i.e. Modelsim result of variable 

length FFT processor for OFDMA system which is implemented by using 2D-

FFT algorithm. A 50 MHz cosine signal was generated from the DDS core in 

which all the input points will be covered for the processing of variable FFT sizes. 



 

Fig.3.15 Simulation result of Variable length FFT processor for OFDMA 

In the Fig.3.15.depending on the index that is mode of the processor, if it is 00 

then the processor performs 128-pt FFT, and if the input mode  is 01 then it 

performs 512-pt FFT similarly for 1024-pt and 2048-

Fig.3.15.with respect to the distance of the out_magnitude indicate that the 

processing of four modes have been completed. The first peak occurred indicates 

the 128-pt FFT has been processed and two peaks are used to show the processing 

of Real as well as Imaginary parts of the input. Similarly the second peak 

indicates processing of 512-pt FFT and is same for the 1024-pt and 2048-

also. 

Fig.3.16 also shows the same processing with extended input. And Fig.3.17 shows 

the synthesis result i.e. the chipscope result on the vertex FPGA kit. The same has 

been programmed in VHDL language for the hardware implementation. 



 

Fig.3.16 Expanded Simulation result of Variable length FFT processor for OFDMA 

 

Fig.3.17. Chipscope Synthesis result of Variable length FFT processor for OFDMA 

 

 



3.7  SUMMARY 

In this chapter 

FPGA, binary encoding format, number representation and signed magnitude 

number representation is also shown. In the next section 8-point FFT algorithm 

has been shown which is the kernel module of the OFDMA processing using 2D-

FFT. Simulation result for the Adder module has been shown. Twiddle factor 

coefficients have been calculated and also simulation 8-point FFT has been 

implemented. In the next section the important part of the dissertation i.e. variable 

length FFT processor using 2D-FFT algorithm for OFDMA system has been 

implemented. The overall block diagram, and the internal processing along with 

the ping-pong memory architecture and DDS-core has been studied and at the last 

implementation part simulation and synthesis results of variable length FFT 

processor using 2D-FFT algorithm were shown. 


